Investigations on the stability of titanium dioxide (TiO2)-coated zinc oxide (ZnO) thin films upon repeated uses for methylene blue (MB) degradation were conducted. Photocorrosion of ZnO, upon exposure to light in aqueous media, can affect the photocatalytic performance due to loss of material. Hence, coating with a more stable metal oxide was seen as a way to suppress the effects of photocorrosion. In this study, homogeneous wurtzite ZnO nanostructured thin films were obtained from thermal oxidation of sputter-deposited Zn films on glass substrates. TiO2 was subsequently deposited onto the ZnO nanostructured thin films using a reactive magnetron sputtering system in an admixture of argon and oxygen gases. After deposition, the thin films were annealed at 500 °C for 1 h. The photocatalytic efficiency and stability of the thin films were investigated after multiple degradation cycles. The addition of a TiO2 film increased the surface roughness and blueshifted the absorption edge of the ZnO thin films. The coated films obtained up to 94.3% degradation efficiency of MB after a 180-min exposure cycle using a solar light simulator. After three cycles, degradation efficiency decreased for the uncoated ZnO photocatalysts. Analysis of the MB solution after one degradation cycle revealed the presence of Zn2+ ions attributed to the effects of photocorrosion. Higher Zn2+ concentrations were observed when the ZnO surface is uncoated. This study showed that the addition of a thin, antiphotocorrosion material such as TiO2 layer decreased the dissolution of ZnO caused by photocorrosion without a significant reduction in the photodegradation efficiency.

1.
A.
Houas
,
H.
Lachheb
,
M.
Ksibi
,
E.
Elaloui
,
C.
Guillard
, and
J.-M.
Herrmann
,
Appl. Catal. B
31
,
145
(
2001
).
2.
L.
Zaraska
,
K.
Mika
,
K. E.
Hnida
,
M.
Gajewska
,
T.
Lojewski
,
M.
Jaskula
, and
G. D.
Sulka
,
Mater. Sci. Eng. B
226
,
94
(
2017
).
3.
B.
Ikizler
and
S. M.
Peker
,
Thin Solid Films
605
,
232
(
2016
).
4.
M.
Sreedhar
,
I.
Neelakanta Reddy
,
C.
Venkata Reddy
,
J.
Shim
, and
J.
Brijitta
,
Mater. Sci. Semicond. Process.
85
,
113
(
2018
).
5.
I.
Levchuk
, “Titanium dioxide based nanomaterials for photocatalytic water treatment,” Ph.D. thesis (Lappeenranta University of Technology, 2016).
6.
G. L. M.
Léonard
,
C. A.
Pàez
,
A. E.
Ramírez
,
J. G.
Mahy
, and
B.
Heinrichs
,
J. Photochem. Photobiol. A
350
,
32
(
2018
).
7.
K.
Siwińska-Stefańska
,
A.
Kubiak
,
A.
Piasecki
,
A.
Dobrowolska
,
K.
Czaczyk
,
M.
Motylenko
,
D.
Rafaja
,
H.
Ehrlich
, and
T.
Jesionowski
,
Appl. Surf. Sci.
463
,
791
(
2019
).
8.
B.
Bozkurt Çírak
,
B.
Caglar
,
T.
Kılınç
,
S.
Morkoç Karadeniz
,
Y.
Erdoğan
,
S.
Kılıç
,
E.
Kahveci
,
A.
Ercan Ekinci
, and
Ç
Çırak
,
Mater. Res. Bull.
109
,
160
(
2019
).
9.
K. M.
Lee
,
C. W.
Lai
,
K. S.
Ngai
, and
J. C.
Juan
,
Water Res.
88
,
428
(
2016
).
10.
P. K.
Spathis
and
I. G.
Poulios
,
Corros. Sci.
37
,
673
(
1995
).
11.
H.
Fu
,
T.
Xu
,
S.
Zhu
, and
Y.
Zhu
,
Environ. Sci. Technol.
42
,
8064
(
2008
).
12.
R. T.
Sapkal
,
S. S.
Shinde
,
T. R.
Waghmode
,
S. P.
Govindwar
,
K. Y.
Rajpure
, and
C. H.
Bhosale
,
J. Photochem. Photobiol. B
110
,
15
(
2012
).
13.
N. M.
Franklin
,
N. J.
Rogers
,
S. C.
Apte
,
G. E.
Batley
,
G. E.
Gadd
, and
P. S.
Casey
,
Environ. Sci. Technol.
41
,
8484
(
2007
).
14.
D.
Maucec
,
A.
Suligoj
,
A.
Ristic
,
G.
Drazic
,
A.
Pintar
, and
N. N.
Tusar
,
Catal. Today
310
,
32
(
2018
).
15.
Y.
Guo
,
H.
Wang
,
C.
He
,
L.
Qiu
, and
X.
Cao
,
Langmuir
25
,
4678
(
2009
).
16.
H.
Zhang
,
R.
Zong
, and
Y.
Zhu
,
J. Phys. Chem. C
113
,
4605
(
2009
).
17.
K.
Rajendran
,
M.
Gajendiran
,
S.
Kim
,
K.
Kim
, and
S.
Balasubramanian
,
J. Ind. Eng. Chem.
57
,
387
(
2018
).
18.
D. W.
Kim
,
S.
Lee
,
H. S.
Jung
,
J. Y.
Kim
,
H.
Shin
, and
K. S.
Hong
,
Int. J. Hydrog. Energy
32
,
3137
(
2007
).
19.
G.
Zheng
,
X.
Lu
,
L.
Qian
, and
F.
Xian
,
Opt. Mater.
67
,
139
(
2017
).
20.
M.
Zhong
,
L.
Chai
, and
Y.
Wang
,
Appl. Surf. Sci.
464
,
301
(
2019
).
21.
P.
Vlazan
,
D. H.
Ursu
,
C.
Irina-Moisescu
,
I.
Miron
,
P.
Sfirloaga
, and
E. V.
Rusu
,
Mater. Charact.
101
,
153
(
2015
).
22.
M.
Perez-Gonzalez
,
S. A.
Tomas
,
J.
Santoyo-Salazar
, and
M.
Morales-Luna
,
Ceram. Int.
43
,
8831
(
2017
).
23.
L.
Liu
,
H.
Ou
,
K.
Hong
, and
L.
Wang
,
J. Alloys Compd.
749
,
217
(
2018
).
24.
B.
Boro
,
B.
Gogoi
,
B. M.
Rajbongshi
, and
A.
Ramchiary
,
Renew. Sust. Energy Rev.
81
,
2264
(
2018
).
25.
S.
Haffad
and
K.
Korir Kiprono
,
Surf. Sci.
686
,
10
(
2019
).
26.
B.
Wang
,
S.
Wei
,
L.
Guo
,
Y.
Wang
,
Y.
Liang
,
B.
Xu
,
F.
Pan
,
A.
Tang
, and
X.
Chen
,
Ceram. Int.
43
,
10991
(
2017
).
27.
S.
Vyas
,
R.
Tiwary
,
K.
Shubham
, and
P.
Chakrabarti
,
Superlattice Microst.
80
,
215
(
2015
).
28.
S.
Nezar
,
N.
Saoula
,
S.
Sali
,
M.
Faiz
,
M.
Mekki
,
N. A.
Laoufi
, and
N.
Tabet
,
Appl. Surf. Sci.
395
,
172
(
2017
).
29.
I.
Mihailova
,
V. I.
Gerbreders
,
E.
Tamanis
,
E.
Sledevskis
,
R. V.
Viter
, and
P.
Sarajevs
,
J. Non-cryst. Solids
377
,
212
(
2013
).
30.
Q.
Xu
,
R.
Hong
,
X.
Chen
,
J.
Wei
, and
Z.
Wu
,
Ceram. Int.
43
,
16391
(
2017
).
31.
L.
Yuan
,
C.
Wang
,
R.
Cai
,
Y.
Wang
, and
G.
Zhou
,
J. Cryst. Growth
390
,
101
(
2014
).
32.
Y. I.
Alivov
,
A. V.
Chernykh
,
M. V.
Chukichev
, and
R. Y.
Korotkov
,
Thin Solid Films
473
,
241
(
2005
).
33.
M. R.
Khanlary
,
V.
Vahedi
, and
A.
Reyhani
,
Molecules
17
,
5021
(
2012
).
34.
G.
Wan
,
S.
Wang
,
L.
Li
,
G.
Mu
,
X.
Yin
,
X.
Zhang
,
Y.
Tang
, and
L.
Yi
,
J. Alloy. Compd.
701
,
549
(
2017
).
35.
H.-T.
Chou
and
H.-C.
Hsu
,
Solid State Electron.
116
,
15
(
2016
).
36.
A.
Mazabuel-Collazos
,
C. D.
Gomez
, and
J. E.
Rodríguez-Páez
,
Mater. Chem. Phys.
222
,
230
(
2019
).
37.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
,
Nat. Methods
9
,
671
(
2012
).
38.
H.
Ennaceri
,
D.
Erfurt
,
L.
Wang
,
T.
Köhler
,
A.
Taleb
,
A.
Khaldoun
,
A. E.
Kenz
,
A.
Benyoussef
, and
A.
Ennaoui
,
Surf. Coat. Technol.
298
,
103
(
2016
).
39.
P. Y.
Dave
,
K. H.
Patel
,
K. V.
Chauhan
,
A. K.
Chawla
, and
S. K.
Rawal
,
Proc. Tech.
23
,
328
(
2016
).
40.
A. D. S.
Montallana
,
B.-Z.
Lai
,
J. P.
Chu
, and
M. R.
Vasquez
,
Mater. Today Comm.
24
,
101183
(
2020
).
41.
M.
Perez-Gonzalez
and
S. A.
Tomas
, “
Surface chemistry of TiO2-ZnO thin films doped with Ag. Its role on the photocatalytic degradation of methylene blue
,”
Catal. Today
(published online).
42.
B.
Babu
,
C.
Lyu
,
C.
Yu
,
P.
Bi
,
Z.
Wen
,
X.
Yang
,
F.
Li
, and
X.-T.
Hao
,
Org. Electron.
62
,
65
(
2018
).
43.
J.
Ni
,
J.
Gao
,
X.
Geng
,
D.
He
, and
X.
Guo
,
Appl. Phys. A
123
,
186
(
2017
).
44.
C. H.
Kim
,
B.-H.
Kim
, and
K. S.
Yang
,
Carbon
50
,
2472
(
2012
).
45.
Y.
Yan
,
M.
Helfand
, and
C.
Clayton
,
Appl. Surf. Sci
37
,
395
(
1989
).
46.
K.
Gurav
,
U.
Patil
,
S.
Pawar
,
J.-H.
Kim
, and
C.
Lokhande
,
J. Alloys Compd.
509
,
7723
(
2011
).
47.
S.
Mofokeng
,
V.
Kumar
,
R.
Kroon
, and
O.
Ntwaeaborwa
,
Spectrochim. Acta A
182
,
42
(
2017
).
48.
M.
Perez-Gonzalez
,
S. A.
Tomas
,
M.
Morales-Luna
,
M. A.
Arvizu
, and
M. M.
Tellez-Cruz
,
Thin Solid Films
594
,
304
(
2015
).
49.
G. R.
Andrade
,
C. C.
Nascimento
,
E. C.
Silva-Junior
,
D. T.
Mendes
, and
I. F.
Gimenez
,
J. Alloys Compd.
710
,
557
(
2017
).
50.
C.
Su
,
Y.
Tong
,
M.
Zhang
,
Y.
Zhang
, and
C.
Shao
,
RSC Adv.
3
,
7503
(
2013
).
You do not currently have access to this content.