In the current study, the electrical behavior of the AlGaN/GaN high electron mobility transistors (HEMTs) grown with an underlying GaN:Mg layer is detailed. It is shown that the activation of the buried p-GaN layer is achieved without hydrogen diffusion out of the layer. Reversal in the electrical behavior of the two-dimensional electron gas (2DEG) is also observed in the as-grown structure based on the p-GaN activation sequence. This behavior is attributed to the complex role played by hydrogen in the overgrown HEMT layers. The results of this study provide new insights into the development of metal organic chemical vapor deposition grown HEMTs with activated buried p-GaN films.

1.
R. P.
Tompkins
,
I.
Mahaboob
,
F.
Shahedipour-Sandvik
, and
N.
Lazarus
,
Solid State Electron.
136
,
36
(
2017
).
2.
H.
Amano
 et al.,
J. Phys. D Appl. Phys.
51
,
163001
(
2018
).
3.
I.
Mahaboob
,
J.
Marini
,
K.
Hogan
,
E.
Rocco
,
R. P.
Tompkins
,
N.
Lazarus
, and
F.
Shahedipour-Sandvik
,
J. Electron. Mater.
47
,
6625
(
2018
).
4.
R. P.
Tompkins
,
I.
Mahaboob
,
S.
Shahedipour-Sandvik
, and
N.
Lazarus
,
ECS Trans.
72
,
89
(
2016
).
5.
I.
Mahaboob
,
M.
Yakimov
,
K.
Hogan
,
E.
Rocco
,
S.
Tozier
, and
F.
Shahedipour-Sandvik
,
IEEE J. Electron Devices Soc.
7
,
581
(
2019
).
6.
I.
Mahaboob
,
M.
Yakimov
,
E.
Rocco
,
K.
Hogan
, and
F.
Shahedipour-Sandvik
,
IEEE Trans. Electron. Dev.
67
,
3983
(
2020
).
7.
C. G.
Van de Walle
,
Phys. Rev. B
56
,
R10020
(
1997
).
8.
J.
Neugebauer
and
C. G.
Van de Walle
,
Appl. Phys. Lett.
68
,
1829
(
1996
).
9.
J.
Neugebauer
and
C. G.
Van de Walle
,
Phys. Rev. Lett.
75
,
4452
(
1995
).
10.
S.
Nakamura
,
T.
Mukai
,
M.
Senoh
, and
N.
Iwasa
,
Jpn. J. Appl. Phys.
31
,
L139
(
1992
).
11.
J. D.
Hwang
and
G. H.
Yang
,
Appl. Surf. Sci.
253
,
4694
(
2007
).
12.
H.
Amano
,
M.
Krro
,
K.
Hiramatsu
, and
I.
Akasaki
,
Jpn. J. Appl. Phys.
28
,
L2112
(
1989
).
13.
S. J.
Pearton
,
J. W.
Lee
, and
C.
Yuan
,
Appl. Phys. Lett.
68
,
2690
(
1996
).
14.
M.
Miyachi
,
T.
Tanaka
,
Y.
Kimura
, and
H.
Ota
,
Appl. Phys. Lett.
72
,
1101
(
1998
).
15.
S.-J.
Chang
,
Y.-K.
Su
,
T.-L.
Tsai
,
C.-Y.
Chang
,
C.-L.
Chiang
,
C.-S.
Chang
,
T.-P.
Chen
, and
K.-H.
Huang
,
Appl. Phys. Lett.
78
,
312
(
2001
).
16.
K.
Hogan
 et al., 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, 31 March–4 April 2019 (IEEE, Piscataway, NJ,
2019
), pp. 1–6.
17.
Y.
Kuwano
,
M.
Kaga
,
T.
Morita
,
K.
Yamashita
,
K.
Yagi
,
M.
Iwaya
,
T.
Takeuchi
,
S.
Kamiyama
, and
I.
Akasaki
,
Jpn. J. Appl. Phys.
52
,
08JK12
(
2013
).
18.
W.
Li
 et al.,
Appl. Phys. Lett.
113
,
062105
(
2018
).
19.
C. H.
Seager
,
S. M.
Myers
,
A. F.
Wright
,
D. D.
Koleske
, and
A. A.
Allerman
,
J. Appl. Phys.
92
,
7246
(
2002
).
20.
Y.-J.
Lin
,
Appl. Phys. Lett.
84
,
2760
(
2004
).
21.
R.
Czernecki
 et al.,
J. Alloys Compd.
747
,
354
(
2018
).
22.
J.
Marini
,
J.
Leathersich
,
I.
Mahaboob
,
J.
Bulmer
,
N.
Newman
, and
F.
Shahedipour-Sandvik
,
J. Cryst. Growth
442
,
25
(
2016
).
23.
J.
Bulmer
,
P.
Suvarna
,
J.
Leathersich
,
J.
Marini
,
I.
Mahaboob
,
N.
Newman
, and
F. S.
Shahedipour-Sandvik
,
IEEE Photonics Technol. Lett.
28
,
39
(
2016
).
24.
J.
Marini
,
I.
Mahaboob
,
E.
Rocco
,
L. D.
Bell
, and
F.
Shahedipour-Sandvik
,
J. Appl. Phys.
124
,
113101
(
2018
).
25.
E.
Rocco
,
I.
Mahaboob
,
K.
Hogan
,
S.
Tozier
,
V.
Meyers
,
B.
McEwen
,
S.
Novak
,
B.
Mazumder
,
L. D.
Bell
, and
F.
Shahedipour-Sandvik
,
Proc. SPIE
10918
,
109180Y
(
2019
).
26.
P.
Suvarna
,
J.
Bulmer
,
J. M.
Leathersich
,
J.
Marini
,
I.
Mahaboob
,
J.
Hennessy
,
L. D.
Bell
,
S.
Nikzad
, and
F. S.
Shahedipour-Sandvik
,
IEEE Photonics Technol. Lett.
27
,
498
(
2015
).
27.
F.
Shahedipour-Sandvik
,
J.
Leathersich
,
R. P.
Tompkins
,
P.
Suvarna
,
M.
Tungare
,
T. A.
Walsh
,
K. W.
Kirchner
,
S.
Zhou
, and
K. A.
Jones
,
Semicond. Sci. Technol.
28
,
074002
(
2013
).
28.
J.
Marini
,
I.
Mahaboob
,
K.
Hogan
,
S.
Novak
,
L. D.
Bell
, and
F.
Shahedipour-Sandvik
,
J. Electron. Mater.
46
,
5820
(
2017
).
29.
V.
Meyers
,
E.
Rocco
,
K.
Hogan
,
S.
Tozier
,
B.
McEwen
,
I.
Mahaboob
, and
F.
Shahedipour-Sandvik
,
J. Electron. Mater.
49
,
3481
(
2020
).
30.
I.
Mahaboob
,
K.
Hogan
,
S. W.
Novak
,
F.
Shahedipour-Sandvik
,
R. P.
Tompkins
, and
N.
Lazarus
,
J. Vac. Sci. Technol. B
36
,
031203
(
2018
).
31.
32.
C. W.
Magee
and
R. E.
Honig
,
Surf. Interface Anal.
4
,
35
(
1982
).
33.
R. D.
Long
 et al.,
Appl. Phys. Lett.
103
,
201607
(
2013
).
34.
S. R.
Alugubelli
,
H.
Fu
,
K.
Fu
,
H.
Liu
,
Y.
Zhao
,
M. R.
McCartney
, and
F. A.
Ponce
,
Appl. Phys. Lett.
115
,
201602
(
2019
).
35.
H.
Xing
,
D. S.
Green
,
H.
Yu
,
T.
Mates
,
P.
Kozodoy
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
Jpn. J. Appl. Phys.
42
,
50
(
2003
).
36.
Z.
Benzarti
,
I.
Halidou
,
Z.
Bougrioua
,
T.
Boufaden
, and
B.
El Jani
,
J. Cryst. Growth
310
,
3274
(
2008
).
37.
A. F.
Wright
,
C. H.
Seager
,
S. M.
Myers
, and
D. D.
Koleske
,
J. Appl. Phys.
94
,
2311
(
2003
).
38.
S. M.
Myers
and
A. F.
Wright
,
J. Appl. Phys.
90
,
5612
(
2001
).
39.
James A.
Van Vechten
,
J.
David Zook
,
Robert D.
Horning
, and
Barbara
Goldenberg
,
Jpn. J. Appl. Phys.
31
,
3662
(
1992
).
You do not currently have access to this content.