We report a real-time investigation on the photocatalytic decomposition of methanol over Cu2O-loaded TiO2 nanotube arrays (TNAs) in high vacuum. Cu2O-loaded TNAs were fabricated using all-electrochemical processes. TNAs were prepared by anodizing Ti foils, and Cu2O nanoparticles (CNPs) were pulse-electrodeposited onto anodized TNA surfaces. The photocatalytic decomposition of methanol was monitored using a quadrupole mass analyzer in high vacuum, where the partial pressures of intermediate and final reaction products were measured. Switching phenomena in the partial pressures of hydrogen (H2), formaldehyde (CH2O), water (H2O), and carbon monoxide (CO) were observed simultaneously according to the ON/OFF sequence of ultraviolet irradiations over TNA/CNP composites, thereby revealing that Cu2O can facilitate proton reduction like noble-metal-based cocatalysts such as platinum, even in a high vacuum environment. The intermediate reaction products suggest that the photocatalytic oxidation of gaseous methanol over TNA/CNP proceeds under the coexistence of direct and indirect hole transfer mechanisms.

1.
M.
Kawai
,
S.
Naito
,
K.
Tamaru
, and
T.
Kawai
,
Chem. Phys. Lett.
98
,
377
(
1983
).
2.
D.
Li
,
H.
Haneda
,
S.
Hishita
, and
N.
Ohashi
,
Chem. Mater.
17
,
2596
(
2005
).
3.
S.
Brosillon
,
L.
Lhomme
,
C.
Vallet
,
A.
Bouzaza
, and
D.
Wolbert
,
Appl. Catal. B
78
,
232
(
2008
).
4.
G. L.
Chiarello
,
L.
Forni
, and
E.
Selli
,
Catal. Today
144
,
69
(
2009
).
5.
Y.
Zhang
,
Z.-R.
Tang
,
X.
Fu
, and
Y.-J.
Xu
,
ACS Nano
4
,
7303
(
2010
).
6.
G. L.
Chiarello
,
M. H.
Aguirre
, and
E.
Selli
,
J. Catal.
273
,
182
(
2010
).
7.
Y.
Hu
,
D. Z.
Li
,
Y.
Zheng
,
W.
Chen
,
Y.
He
,
Y.
Shao
,
X.
Fu
, and
G.
Xiao
,
Appl. Catal. B Environ.
104
,
30
(
2011
).
8.
S. W.
Verbruggen
,
J. Photochem. Photobiol. C Photochem. Rev.
24
,
64
(
2015
).
9.
J.
Asai
and
K.
Noda
,
J. Vac. Sci. Technol. B
36
,
04H101
(
2018
).
10.
T.
Chen
,
Z.
Feng
,
G.
Wu
,
J.
Shi
,
G.
Ma
,
P.
Ying
, and
C.
Li
,
J. Phys. Chem. C
111
,
8005
(
2007
).
11.
J. G.
Highfield
,
M. H.
Chen
,
P. T.
Nguyen
, and
Z.
Chen
,
Energy Environ. Sci.
2
,
991
(
2009
).
12.
Z.
Zhang
,
F. Md.
Hossain
,
T.
Miyazaki
, and
T.
Takahashi
,
Environ. Sci. Technol.
44
,
4741
(
2010
).
13.
G.
Halasi
,
G.
Schubert
, and
F.
Solymosi
,
J. Catal.
294
,
199
(
2012
).
14.
A.
Caravaca
,
H.
Daly
,
M.
Smith
,
A.
Mills
,
S.
Chansai
, and
C.
Hardacre
,
React. Chem. Eng.
1
,
649
(
2016
).
15.
16.
M. A.
Henderson
,
Surf. Sci. Rep.
66
,
185
(
2011
).
17.
K. R.
Philips
,
S. C.
Jensen
,
M.
Baron
,
S.-C.
Li
, and
C. M.
Friend
,
J. Am. Chem. Soc.
135
,
574
(
2013
).
18.
C.
Xu
,
W.
Yang
,
Q.
Guo
,
D.
Dai
,
M.
Chen
, and
X.
Yang
,
J. Am. Chem. Soc.
135
,
10206
(
2013
).
19.
K.
Noda
,
M.
Hattori
,
K.
Amari
,
K.
Kobayashi
,
T.
Horiuchi
, and
K.
Matsushige
,
Jpn. J. Appl. Phys.
46
,
L749
(
2007
).
20.
S. B.
Sadale
,
K.
Noda
,
K.
Kobayashi
, and
K.
Matsushige
,
Appl. Surf. Sci.
257
,
10300
(
2011
).
21.
S. B.
Sadale
,
K.
Noda
,
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Thin Solid Films
520
,
3487
(
2012
).
22.
T.
Ohta
,
H.
Masegi
, and
K.
Noda
,
Mater. Res. Bull.
99
,
367
(
2018
).
23.
J.
Aranã
,
C.
Fernández Rodríguez
,
O.
González Díaz
,
J. A.
Herrera Melián
, and
J.
Pérez Penã
,
Catal. Today
101
,
261
(
2005
).
24.
O. K.
Varghese
,
M.
Paulose
,
T. J.
LaTempa
, and
C. A.
Grimes
,
Nano Lett.
9
,
731
(
2009
).
25.
A.
Amorós-Pérez
,
L.
Cano-Casanova
,
M.
Ángeles Lillo-Ródenas
, and
M.
Carmen Román-Martínez
,
Catal. Today
287
,
78
(
2017
).
26.
D.
Tahir
and
S.
Tougaard
,
J. Phys. Condens. Matter
24
,
175002
(
2012
).
27.
E.
Aguirre
,
R.
Zhou
,
A. J.
Eugene
,
M. I.
Guzman
, and
M. A.
Grela
,
Appl. Catal. B
217
,
485
(
2017
).
28.
S.
Kakuta
and
T.
Abe
,
Electrochem. Solid State Lett.
12
,
P1
(
2009
).
29.
J. C.
Wang
,
L.
Zhang
,
W. X.
Fang
,
J.
Ren
,
Y. Y.
Li
,
H. C.
Yao
,
J. S.
Wang
, and
Z.-J.
Li
,
ACS Appl. Mater. Interfaces
7
,
8631
(
2015
).
30.
P.
Li
,
H.
Jing
,
J.
Xu
,
C.
Wu
,
H.
Peng
,
J.
Lu
, and
F.
Lu
,
Nanoscale
6
,
11380
(
2014
).
31.
Z.
Xiong
,
Z.
Lei
,
C.-C.
Kuang
,
X.
Chen
,
B.
Gong
,
Y.
Zhao
,
J.
Zhang
,
C.
Zheng
, and
J. C. S.
Wu
,
Appl. Catal. B
202
,
695
(
2017
).
32.
A.
Paracchino
,
V.
Laporte
,
M.
Grätzel
, and
E.
Thimsen
,
Nat. Mater.
10
,
456
(
2011
).
33.
A.
Ashida
,
S.
Sato
,
T.
Yoshimura
, and
N.
Fujimura
,
J. Cryst. Growth
468
,
245
(
2017
).
34.
C. Y.
Toe
,
Z.
Zheng
,
H.
Wu
,
J.
Scott
,
R.
Amal
, and
Y. H.
Ng
,
Angew. Chem. Int. Ed.
57
,
13613
(
2018
).
35.
L.
Huang
,
F.
Peng
, and
F. S.
Ohuchi
,
Surf. Sci.
603
,
2825
(
2009
).
36.
W.
Siripala
,
A.
Ivanovskaya
,
T. F.
Jaramillo
,
S.-H.
Baeck
, and
E. W.
McFarland
,
Sol. Energy Mater. Sol. Cells
77
,
229
(
2003
).
37.
Y.
Bessekhouad
,
D.
Robert
, and
J.-V.
Weber
,
Catal. Today
101
,
315
(
2005
).
38.
S.
Zhang
,
S.
Zhang
,
F.
Peng
,
H.
Zhang
,
H.
Liu
, and
H.
Zhao
,
Electrochem. Commun.
13
,
861
(
2011
).
39.
Y.
Li
,
B.
Wang
,
S.
Liu
,
X.
Duan
, and
Z.
Hu
,
Appl. Surf. Sci.
324
,
736
(
2015
).
40.
Q.
Hu
,
J.
Huang
,
G.
Li
,
Y.
Jiang
,
H.
Lan
,
W.
Guo
, and
Y.
Cao
,
Appl. Surf. Sci.
382
,
170
(
2016
).
41.
H.
Yin
,
X.
Wang
,
L.
Wang
,
Q.
Nie
,
Y.
Zhang
, and
W.
Wu
,
Mater. Res. Bull.
72
,
176
(
2015
).
42.
D.
Gong
,
C. A.
Grimes
,
O. K.
Varghese
,
W. C.
Hu
,
R. S.
Singh
,
Z.
Chen
, and
E. C.
Dickey
,
J. Mater. Res.
16
,
3331
(
2001
).
43.
Y. P.
He
,
Z. Y.
Zhang
, and
Y. P.
Zhao
,
J. Vac. Sci. Technol. B
26
,
1350
(
2008
).
44.
T. J.
LaTempa
,
X.
Feng
,
M.
Paulose
, and
C. A.
Grimes
,
J. Phys. Chem. C
113
,
16293
(
2009
).
45.
C.
Das
,
P.
Roy
,
M.
Yang
,
H.
Jha
, and
P.
Schmuki
,
Nanoscale
3
,
3094
(
2011
).
46.
M.
Hattori
,
K.
Noda
, and
K.
Matsushige
,
Appl. Phys. Lett.
99
,
123107
(
2011
).
47.
I.
Paramasivam
,
H.
Jha
,
N.
Liu
, and
P.
Schmuki
,
Small
8
,
3073
(
2012
).
48.
M.
Ye
,
J.
Gong
,
Y.
Lai
,
C.
Lin
, and
Z.
Lin
,
J. Am. Chem. Soc.
134
,
15720
(
2012
).
49.
M.
Hattori
,
K.
Noda
,
T.
Nishi
,
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Appl. Phys. Lett.
102
,
043105
(
2013
).
50.
L.-K.
Tsui
,
L.
Wu
,
N.
Swami
, and
G.
Zangari
,
ECS Electrochem. Lett.
1
,
D15
(
2012
).
51.
S.
Sreekantan
,
R.
Hazan
, and
Z.
Lockman
,
Thin Solid Films
518
,
16
(
2009
).
52.
A. V.
Naumkin
,
A.
Kraut-Vass
,
S. W.
Gaarenstroom
, and
C. J.
Powell
, NIST Standard Reference Database 20, version 4.1 (2012).
53.
D.
Barreca
,
A.
Gasparotto
, and
E.
Tondello
,
Surf. Sci. Spectra
14
,
41
(
2007
).
54.
A. F.
Lee
,
C. M. A.
Parlett
, and
K.
Wilson
, in
Contemporary Catalysis Science, Technology, and Applications
, edited by
D.
Vogt
,
P. C. J.
Kamer
, and
J.
Thybaut
(
The Royal Society of Chemistry
,
London
,
2017
), pp.
496
512
.
55.
G.
Moretti
and
H. P.
Beck
,
Surf. Interface. Anal.
51
,
1359
(
2019
).
56.
C.
Santato
,
M.
Ulmann
, and
J.
Augustynski
,
J. Phys. Chem. B
105
,
936
(
2001
).
57.
A. Y.
Ahmed
,
T. A.
Kandiel
,
I.
Ivanova
, and
D.
Bahnemann
,
Appl. Surf. Sci.
319
,
44
(
2014
).
58.
T. L.
Villarreal
,
R.
Gómez
,
M.
Neumann-Spallart
,
N.
Alonso-Vante
, and
P.
Salvador
,
J. Phys. Chem. B
108
,
15172
(
2004
).
59.
See supplementary material at https://doi.org/10.1116/6.0000194 for top-view SEM image and gas phase photocatalysis measurement over CNPs deposited on a Ti foil by pulse electrodeposition.
60.
L.
Hongmin
,
L.
Zhiwei
,
Y.
Xiaojiang
, and
S.
Wenfeng
,
Chemosphere
60
,
630
(
2005
).
61.
J.
Juodkazytė
,
B.
Šebeka
,
I.
Savickaja
,
V.
Pakštas
,
A.
Naujokaitis
, and
A.
Grigucevičienė
,
Mater. Sci. Semicond. Proc.
80
,
56
(
2018
).
62.
H.
Masegi
,
S.
Imai
,
S. B.
Sadale
, and
K.
Noda
,
Jpn. J. Appl. Phys.
59
,
065503
(
2020
).

Supplementary Material

You do not currently have access to this content.