Ion implantation is a useful method of fabricating p-type zinc oxide (ZnO) nanorods; however, it typically causes structural defects in the substrate material. Rapid thermal annealing (RTA) is a well-known annealing process in the semiconductor industry used to restore lattice defects, and it has the advantage of a fast processing time. Herein, we report on the effects of arsenic (As) implantation and RTA on ZnO nanorods for p-type doping. As+ ions were implanted using a mid-current ion implanter. A long-duration RTA of over 10 min that was used to activate the implanted As+ ions and recover the destroyed ZnO lattice changed the morphology of the As+-ion-implanted regions. The structural recovery after RTA at over 750 °C for 1 min was significant. In the low-temperature photoluminescence spectra, a new acceptor-bound exciton emission (A°X) peak associated with the As acceptor was observed. When RTA was conducted at 950 °C, p-type behavior of the As-doped ZnO nanorods could be observed, and the hole concentration was determined to be 6.311 × 1016 cm−3. This result indicates that the implanted As+ ions were activated as p-type dopants for 1 min.

1.
D. B.
Thompson
,
J. J.
Richardson
,
S. P.
DenBaars
, and
F. F.
Lange
,
Appl. Phys. Express
2
,
042101
(
2009
).
2.
Y. F.
Hsu
 et al.,
Adv. Funct. Mater.
18
,
1020
(
2008
).
3.
M.
Law
,
L. E.
Greene
,
J. C.
Johnson
,
R.
Saykally
, and
P.
Yang
,
Nat. Mater.
4
,
455
(
2005
).
4.
J. H.
He
,
P. H.
Chang
,
C. Y.
Chen
, and
K. T.
Tsai
,
Nanotechnology
20
,
135701
(
2009
).
5.
S.
Baruah
and
J.
Dutta
,
Sci. Technol. Adv. Mater.
10
,
013001
(
2009
).
6.
Y.
Sun
,
G. M.
Fuge
, and
M. N. R.
Ashfold
,
Chem. Phys. Lett.
396
,
21
(
2004
).
7.
W.-T.
Chiou
,
W.-Y.
Wu
, and
J.-M.
Ting
,
Diam. Relat. Mater.
12
,
1841
(
2003
).
8.
Y. W.
Heo
,
V.
Varadarajan
,
M.
Kaufman
,
K.
Kim
,
D. P.
Norton
,
F.
Ren
, and
P. H.
Fleming
,
Appl. Phys. Lett.
81
,
3046
(
2002
).
10.
D. C.
Look
,
Mater. Sci. Eng. B
80
,
383
(
2001
).
11.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
41301
(
2005
).
12.
A.
Janotti
and
C. G.
Van de Walle
,
Appl. Phys. Lett.
87
,
122102
(
2005
).
13.
G.
Perillat-Merceroz
,
F.
Donatini
,
R.
Thierry
,
P.-H.
Jouneau
,
P.
Ferret
, and
G.
Feuillet
,
J. Appl. Phys.
111
,
83524
(
2012
).
14.
S.-W.
Han
,
Y.-B.
Lee
,
C.-H.
Kwak
,
S.-Y.
Seo
,
S.-H.
Kim
,
C.-I.
Park
,
B.-H.
Kim
,
S.-H.
Park
, and
Y.-D.
Choi
,
J. Korean Phys. Soc.
56
,
2050
(
2010
).
15.
C.-H.
Kwak
,
Y.-B.
Lee
,
S.-Y.
Seo
,
S.-H.
Kim
,
C.-I.
Park
,
B.-H.
Kim
,
D. W.
Jeong
,
J. J.
Kim
,
Z.
Jin
, and
S.-W.
Han
,
Curr. Appl. Phys.
11
,
S328
(
2011
).
16.
C. K.
To
,
B.
Yang
,
C.
Su
,
C. C.
Ling
,
C. D.
Beling
, and
S.
Fung
,
J. Appl. Phys.
110
,
113521
(
2011
).
17.
T.
Wu
,
A.
Wang
,
L.
Zheng
,
G.
Wang
,
Q.
Tu
,
B.
Lv
,
Z.
Liu
,
Z.
Wu
, and
Y.
Wang
,
Sci. Rep.
9
,
17393
(
2019
).
18.
G.
Brauer
,
J.
Kuriplach
,
C. C.
Ling
, and
A. B.
Djurisic
,
J. Phys. Conf. Ser.
265
,
012002
(
2011
).
19.
Y.
Shen
,
L.
Mi
,
X.
Xu
,
J.
Wu
,
P.
Wang
,
Z.
Ying
, and
N.
Xu
,
Solid State Commun.
148
,
301
(
2008
).
20.
O.
Lupan
,
T.
Pauporte
,
T. L.
Bahers
,
I.
Ciofini
, and
B.
Viana
,
J. Phys. Chem. C
115
,
14548
(
2011
).
21.
O.
Lupan
,
T.
Pauporte
,
B.
Viana
, and
P.
Aschehoug
,
Electrochim. Acta
56
,
10543
(
2011
).
22.
S.
Limpijumnong
,
S. B.
Zhang
,
S.-H.
Wei
, and
C. H.
Park
,
Phys. Rev. Lett.
92
,
155504
(
2004
).
23.
J.-Y.
Zhang
,
P.-J.
Li
,
H.
Sun
,
X.
Shen
,
T.-S.
Deng
,
K.-T.
Zhu
,
Q.-F.
Zhang
, and
J.-L.
Wu
,
Appl. Phys. Lett.
93
,
021116
(
2008
).
24.
W.
Lee
,
M.-C.
Jeong
,
S.-W.
Joo
, and
J.-M.
Myoung
,
Nanotechnology
16
,
764
(
2005
).
25.
W.
Lee
,
M.-C.
Jeong
, and
J.-M.
Myoung
,
Appl. Phys. Lett.
85
,
6167
(
2004
).
26.
Y.
Yang
,
X. W.
Sun
,
B. K.
Tay
,
G. F.
You
,
S. T.
Tan
, and
K. L.
Teo
,
Appl. Phys. Lett.
93
,
253107
(
2008
).
27.
Y. J.
Chen
,
H.-W.
Jen
,
M.-S.
Wong
,
C.-H.
Ho
,
J.-H.
Liang
,
J.-T.
Liu
, and
J.-H.
Pang
,
J. Cryst. Growth
362
,
193
(
2013
).
28.
T. S.
Jeong
,
M. S.
Han
,
C. J.
Youn
, and
Y. S.
Park
,
J. Appl. Phys.
96
,
175
(
2004
).
29.
J. D.
Ye
,
S.
Tripathy
,
F.-F.
Ren
,
X. W.
Sun
,
G. Q.
Lo
, and
K. L.
Teo
,
Appl. Phys. Lett.
94
,
011913
(
2009
).
30.
F.
Friedrich
and
N. H.
Nickel
,
Appl. Phys. Lett.
91
,
111903
(
2007
).
31.
R.
Cuscó
,
E.
Alarcón-Lladó
,
J.
Ibáñez
,
L.
Artús
,
J.
Jiménez
,
B.
Wang
, and
M. J.
Callahan
,
Phys. Rev. B
75
,
165202
(
2007
).
32.
L.
Bergman
,
X.-B.
Chen
,
J.
Huso
,
J. L.
Morrison
, and
H.
Hoeck
,
J. Appl. Phys.
98
,
093507
(
2005
).
33.
W.
Liu
,
W.
Li
,
Z.
Hu
,
Z.
Tang
, and
X.
Tang
,
J. Appl. Phys.
110
,
013901
(
2011
).
34.
M.
Willander
,
O.
Nur
,
J. R.
Sadaf
,
M. I.
Qadir
,
S.
Zaman
,
A.
Zainelabdin
,
N.
Bano
, and
I.
Hussain
,
Materials
3
,
2643
(
2010
).
35.
Y. R.
Ryu
,
T. S.
Lee
, and
H. W.
White
,
Appl. Phys. Lett.
83
,
87
(
2003
).
36.
E.
Przeździecka
,
E.
Kamińska
,
K. P.
Korona
,
E.
Dynowska
,
W.
Dobrowolski
,
R.
Jakieła
,
Ł
Kłopotowski
, and
J.
Kossut
,
Semicond. Sci. Technol.
22
,
10
(
2006
).
37.
H.
Alves
,
D.
Pfisterer
,
A.
Zeuner
,
T.
Riemann
,
J.
Christen
,
D. M.
Hofmann
, and
B. K.
Meyer
,
Opt. Mater.
23
,
33
(
2003
).
38.
D.-K.
Hwang
,
H.-S.
Kim
,
J.-H.
Lim
,
J.-Y.
Oh
,
J.-H.
Yang
,
S.-J.
Park
,
K.-K.
Kim
,
D. C.
Look
, and
Y. S.
Park
,
Appl. Phys. Lett.
86
,
151917
(
2005
).
You do not currently have access to this content.