Nanostructured multitip surfaces have sufficient potential to obtain the high emission currents necessary to develop stable and noninertial sources of free electrons with increased levels of permissible currents. The key to understanding the processes of formation and stability of macroscopic emission currents from these large area field emitters (LAFEs) is assessing the local characteristics of individual emission sites. Herein, a method for determining the local emission characteristics of nanoscale emission sites is developed via processing the glow pattern data and a system for rapidly recording the current–voltage characteristics of LAFEs.
REFERENCES
1.
M. T.
Cole
, M.
Nakamoto
, and W. I.
Milne
, “Field emission displays (FEDs) and surface-conduction electron-emitter displays (SEDs)
,” in Handbook of Digital Imaging
(Wiley
, New York
, 2015
), pp. 1
–28
.2.
M. T.
Cole
, C.
Collins
, R.
Parmee
, C.
Li
, and W. I.
Milne
, “Nanocarbon electron emitters advances and applications
,” in Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications
, edited by V. K.
Thakur
and M. K.
Thakur
(CRC
, Boca Raton, FL, 2015
), p. 26
.3.
R. J.
Parmee
, C. M.
Collins
, W. I.
Milne
, and M. T.
Cole
, Nano Convergence
2
, 1
(2015
). 4.
S. H.
Lee
, J. S.
Han
, H. B.
Go
, J.
Jeon
, J. H.
Yang
, P.
Kim
, and C. J.
Lee
, 2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (IEEE
, Piscataway, NJ, 2018
), p. 86
.5.
A.
Basu
, M. E.
Swanwick
, A. A.
Fomani
, and L. F.
Velsquez-Garca
, J. Phys. D Appl. Phys.
48
, 225501
(2015
). 6.
N. A.
Moody
et al, Phys. Rev. Appl.
10
, 047002
(2018
). 7.
E.
Gidcumb
, B.
Gao
, J.
Shan
, C.
Inscoe
, J.
Lu
, and O.
Zhou
, Nanotechnology
25
, 245704
(2014
). 8.
A. P.
Gupta
et al, Materials
10
, 878
(2017
). 9.
A.
Mavalankar
, J.
Cameron
, I.
Gomes
, S.
Sottini
, M.
Fohler
, V.
Soloviev
, G.
Travish
, K.
Mingard
, and C.
Minelli
, 2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (IEEE, Piscataway, NJ, 2018), p. 82
.10.
C.
Puett
, C.
Inscoe
, A.
Hartman
, J.
Calliste
, D. K.
Franceschi
, J.
Lu
, O.
Zhou
, and Y. Z.
Lee
, WIREs Nanomed. Nanobiotechnol.
10
, e1475
(2018
). 11.
X.
Cao
, J.
Yin
, K.
Zheng
, L.
Wang
, S.
Deng
, J.
She
, N.
Xu
, and J.
Chen
, 32nd International Vacuum Nanoelectronics and 12th International Vacuum Electron Sources
, Cincinnati, OH, 22–26 July 2019 (University of Cincinnati
, Cincinnati, OH, 2019
), p. 77
.12.
S.
Park
et al, IEEE Electron. Device Lett.
39
, 1
(2018
). 13.
D.
Chen
, Y.
Xu
, G.
Zhang
, Z.
Zhang
, J.
She
, S.
Deng
, N.
Xu
, and J.
Chen
, Vacuum
144
, 266
(2017
). 14.
D. R.
Whaley
, C. M.
Armstrong
, C. E.
Holland
, C. A.
Spindt
, and P. R.
Schwoebel
, 2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (IEEE, Piscataway, NJ, 2018), p. 64
.15.
Y.-M.
Shin
, G.
Fagerberg
, M.
Figora
, and A.
Green
, Proceedings of the North American Particle Accelerator Conference (NAPAC'16)
, Chicago, IL (JACoW, Geneva, Switzerland, 2016), p. 785.16.
J.
Browning
, S.
Fernandez-Gutierrez
, M. C.
Lin
, D. N.
Smithe
, and J.
Watrous
, Appl. Phys. Lett.
104
, 233507
(2014
). 17.
P.
Szyszka
, T.
Grzebyk
, M.
Krysztof
, A.
Gorecka-Drzazga
, and J. A.
Dziuban
, 2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (IEEE, Piscataway, NJ, 2018), p. 186
.18.
C.
Yang
and L. F.
Velasquez-Garcia
, J. Phys. D Appl. Phys.
52
, 075301
(2019
). 19.
G. J.
Hansel
, “Power conversion and scaling for vanishingly small satellites with electric propulsion
,” in Master of Science in Aeronautics and Astronautics
(Massachusetts Institute of Technology
, Cambridge, MA, 2014
), p. 53
, https://dspace.mit.edu/handle/1721.1/90667?show=full.20.
P.
Lozano
, 2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (IEEE, Piscataway, NJ, 2018), p. 34
.21.
P.
Laufer
, D.
Bock
, and M.
Tajmar
, 2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (IEEE, Piscataway, NJ, 2018), p. 42
.22.
D. R.
Lev
, I. G.
Mikellides
, D.
Pedrini
, D. M.
Goebel
, B. A.
Jorns
, and M. S.
McDonald
, Rev. Mod. Plasma Phys.
3
, 6
(2019
).23.
Y.
Ohkawa
, T.
Okumura
, K.
Iki
, H.
Okamoto
, and S.
Kawamoto
, 2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (IEEE
, Piscataway, NJ, 2018
), p. 40
.24.
N.
Yamamoto
, T.
Morita
, Y.
Ohkawa
, M.
Nakano
, and I.
Funaki
, J. Propul. Power
35
, 490
(2019
).25.
J.-W.
Han
, J. S.
Oh
, and M.
Meyyappan
, Appl. Phys. Lett.
100
, 213505
(2012
). 26.
X.
Yuan
et al, Sci. Rep. UK
6
, 32936
(2016
). 27.
O.
Yilmazoglu
, 2017 30th International Vacuum Nanoelectronics Conference
, Regensburg, Germany, 10–14 July 2017 (IEEE
, Piscataway, NJ, 2017
), p. 8
.28.
D.
Ehberger
, J.
Hammer
, M.
Eisele
, M.
Kruger
, J.
Noe
, A.
Hogele
, and P.
Hommelhoff
, Phys. Rev. Lett.
114
, 227601
(2015
). 29.
M. E.
Green
et al, Nano Lett.
19
, 158
(2019
). 30.
Y.
Zhang
, S.
Deng
, J.
Du
, X.
Lai
, J.
Chen
, and N.
Xu
, IEEE Trans. Electron. Devices
60
, 2677
(2013
). 31.
Y.
Zhang
, T.
Hong
, W.
Zhang
, N.
Xu
, J.
Chen
, and S.
Deng
, 32nd International Vacuum Nanoelectronics and 12th International Vacuum Electron Sources
, Cincinnati, OH, 22–26 July 2019 (University of Cincinnati
, Cincinnati, OH, 2019
), p. 59
.32.
G. A.
Spindt
, J. Appl. Phys.
39
, 3504
(1968
).33.
S. B.
Fairchild
et al, Nanotechnology
26
, 105706
(2015
). 34.
J. R.
Harris
, K. L.
Jensen
, J. J.
Petillo
, S.
Maestas
, W.
Tang
, and D. A.
Shiffler
, J. Appl. Phys.
121
, 203303
(2017
). 35.
E. P.
Sheshin
, A. Y.
Kolodyazhnyj
, N. N.
Chadaev
, A. O.
Getman
, M. I.
Danilkin
, and D. I.
Ozol
, J. Vac. Sci. Technol. B
37
, 031213
(2019
). 36.
G. D.
Demin
, N. A.
Djuzhev
, N. A.
Filippov
, P. Y.
Glagolev
, I. D.
Evsikov
, and N. N.
Patyukov
, J. Vac. Sci. Technol. B
37
, 022903
(2019
). 37.
S. A.
Guerrera
and A. I.
Akinwande
, Nanotechnology
27
, 295302
(2016
). 38.
E.
Forati
, T. J.
Dill
, A. R.
Tao
, and D.
Sievenpiper
, Nat. Commun.
7
, 13399
(2016
). 39.
A. V.
Alekseyev
, E. A.
Lebedev
, I. M.
Gavrilin
, E. P.
Kitsuk
, R. M.
Ryazanov
, A. A.
Dudin
, A. A.
Polokhin
, and D. G.
Gromov
, Semiconductors
52
, 1936
(2018
). 40.
P.-H.
Lin
, C.-L.
Sie
, C.-A.
Chen
, H.-C.
Chang
, Y.-T.
Shih
, H.-Y.
Chang
, W.-J.
Su
, and K.-Y.
Lee
, Nanoscale Res. Lett.
10
, 1
(2015
). 41.
Y.
Sun
, D. A.
Jaffray
, and J. T. W.
Yeow
, IEEE Trans. Electron. Devices
60
, 464
(2013
). 42.
T.
Connolly
, R. C.
Smith
, Y.
Hernandez
, Y.
Gun’ko
, J. N.
Coleman
, and J.
David Carey
, Small
5
, 826
(2009
). 43.
S. M.
Lyth
and S. R. P.
Silva
, ECS J. Solid State Sci. Technol.
4
, 3034
(2015
).44.
L.
Chen
, H.
Yu
, J.
Zhong
, L.
Song
, J.
Wu
, and W.
Su
, Mater. Sci. Eng. B
220
, 44
(2017
). 45.
Y.
Sun
, K. N.
Yun
, G.
Leti
, S. H.
Lee
, Y.-H.
Song
, and C. J.
Lee
, Nanotechnology
28
, 065201
(2017
). 46.
Y.
Li
, Y.
Sun
, and J. T. W.
Yeow
, Nanotechnology
26
, 242001
(2015
). 47.
L.
Nilsson
, O.
Groening
, P.
Groening
, O.
Kuettel
, and L.
Schlapbach
, J. Appl. Phys.
90
, 768
(2001
). 48.
A.
Navitski
, Scanning Field Emission Investigations of Structured CNT and MNW Cathodes, Niobium Surfaces and Photocathodes
(Dissertation zur Erlangung des Doktorgrades
, Wuppertal
, 2010
), p. 125
.49.
D. A.
Bandurin
, V. I.
Kleshch
, E. A.
Smolnikova
, I. V.
Obronov
, A. G.
Nasibulin
, E. I.
Kauppinen
, and A. N.
Obraztsov
, J. Nanoelectron. Optoelectron.
8
, 114
(2013
). 50.
T.
Shiroishi
, A.
Hosono
, A.
Sono
, K.
Nishimura
, Y.
Suzuki
, S.
Nakata
, and S.
Okuda
, J. Vac. Sci. Technol. B
24
, 979
(2006
). 51.
D.
Lysenkov
, H.
Abbas
, G.
Müller
, J.
Engstler
, K. P.
Budna
, and J. J.
Schneider
, J. Vac. Sci. Technol. B
23
, 809
(2005
). 52.
H.
Jung
, S. Y.
An
, D. M.
Jang
, J. M.
Kim
, J. Y.
Park
, and D.
Kim
, Carbon
50
, 987
(2012
). 53.
Y. V.
Fedoseeva
, L. G.
Bulusheva
, A. V.
Okotrub
, M. A.
Kanygin
, D. V.
Gorodetskiy
, I. P.
Asanov
, D. V.
Vyalikh
, A. P.
Puzyr
, and V. S.
Bondar
, Sci. Rep. UK
5
, 9379
(2015
). 54.
R.
Patra
, A.
Singh
, V. D.
Vankar
, and S.
Ghosh
, Adv. Mater. Lett.
7
, 771
(2016
). 55.
W.
Liu
, F.
Zeng
, L.
Xin
, C.
Zhu
, and Y.
He
, J. Vac. Sci. Technol. B
26
, 32
(2008
). 56.
O.
Chubenko
, S. S.
Baturin
, K. K.
Kovi
, A. V.
Sumant
, and S. V.
Baryshev
, ACS Appl. Mater. Interfaces
9
, 33229
(2017
). 57.
M. M.
Kopelvski
, E.
Galeazzo
, H. E. M.
Peres
, F. J.
Ramirez-Fernandez
, D. A. C.
Silva
, and M. O. S.
Dantas
, Measurement
93
, 208
(2016
). 58.
E. O.
Popov
, A. G.
Kolosko
, S. V.
Filippov
, and M. V.
Ershov
, 25th International Vacuum Nanoelectronics Conference
, Jeju, South Korea, 9–13 July 2012 (IEEE
, Piscataway, NJ, 2012
), p. 306
.59.
E. O.
Popov
, A. G.
Kolosko
, S. V.
Filippov
, and E. I.
Terukov
, J. Vac. Sci. Technol. B
36
, 02C106
(2018
). 60.
E. O.
Popov
, A. G.
Kolosko
, S. V.
Filippov
, and P. A.
Romanov
, Mater. Today-Proc.
5
, 13800
(2018
) (AEM, University of Surrey, 12–14 September 2016, Guildford). 61.
R. G.
Forbes
, Roy. Soc. Open Sci.
6
, 190912
(2019
). 62.
E. O.
Popov
, A. G.
Kolosko
, S. V.
Filippov
, and S. A.
Ponyaev
, J. Phys.: Conf. Ser.
1400
, 077059
(2019
).63.
64.
K. L.
Jensen
, J. Appl. Phys.
126
, 065302
(2019
). 65.
R. G.
Forbes
and J. H. B.
Deane
, Proc. R. Soc. Lond. Ser. A
463
, 2907
(2007
). 66.
R. G.
Forbes
, 2016 Young Researchers in Vacuum Micro/Nano Electronics
, VMNE-YR, Russia, 5–6 October 2016 (IEEE, St. Petersburg), p. 1
.67.
E. L.
Murphy
and R. H.
Good
, Phys. Rev.
102
, 1464
(1956
). 68.
L. W.
Swanson
and A. E.
Bell
, Adv. Electron. Electron. Phys.
32
, 193
(1973
). 69.
V. N.
Shrednik
, “Field emission theory
,” in Cold Cathodes
, edited by M. I.
Elinson
(Sovetskoe Radio
, Moscow
, 1974
), p. 336
.70.
R. G.
Forbes
, J. Vac. Sci. Technol. B
17
, 526
(1999
). 71.
E. O.
Popov
, S. O.
Popov
, and O. P.
Korovin
, ICCP5, Kanazawa, Japan, 1-04 (1999
).72.
O. P.
Korovin
, E. O.
Popov
, V. N.
Shrednik
, and S. S.
Karatetsky
, Technol. Phys. Lett.
25
, 310
(1999
). 73.
E. O.
Popov
, A. A.
Pashkevich
, A. O.
Pozdnyakov
, and O. F.
Pozdnyakov
, J. Vac. Sci. Technol. B
26
, 745
(2008
), http://www.radiotec.ru/article/17666ISSN2225-0999#english. 74.
E. O.
Popov
, A. G.
Kolosko
, S. V.
Filippov
, I. L.
Fedichkin
, and P. A.
Romanov
, J. Vac. Sci. Technol. B
33
, 03C109
(2015
). 75.
E. O.
Popov
, A. G.
Kolosko
, S. V.
Filippov
, P. A.
Romanov
, and I. L.
Fedichkin
, Nanomater. Nanostruct. XXI
1
, 14
(2016
).76.
R. G.
Forbes
, Proc. R. Soc. A
469
, 20130271
(2013
). 77.
A. G.
Kolosko
, S. V.
Filippov
, P. A.
Romanov
, E. O.
Popov
, and R. G.
Forbes
, J. Vac. Sci. Technol. B
34
, 041802
(2016
). 78.
H.
Liu
and Y.
Saito
, J. Nanosci. Nanotechnol.
10
, 3983
(2010
). 79.
P.
Zhang
, J.
Park
, S. B.
Fairchild
, P. N.
Lockwood
, Y. Y.
Lau
, J.
Ferguson
, and T.
Back
, Appl. Sci.
8
, 1175
(2018
). 80.
T. A.
de Assis
, F. F.
Dall'Agnol
, and R. F. S.
Andrade
, J. Phys. D Appl. Phys.
49
, 355301
(2016
). 81.
E. O.
Popov
, A. G.
Kolosko
, S. V.
Filippov
, and T. A.
de Assis
, Vacuum
173
, 109159
(2020
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.