Fermi level pinning at Schottky barriers strongly limits the minimization of contact resistances in devices and thereby limits the scaling of modern Si electronic devices, so it is useful to understand the full range of behaviors of Schottky barriers. The authors find that some semiconductor interfaces with compound metals like silicides have apparently weaker Fermi level pinning. This occurs as these metals have an underlying covalent skeleton, whose interfaces with semiconductors lead to miscoordinated defect sites that create additional localized interface states that go beyond the standard metal-induced gap states (MIGSs) model of Schottky barriers. This causes a stronger dependence of Schottky barrier height on the metal and on interface orientation. These states are argued to be an additional component needed to extend the MIGS model.

1.
S.
Datta
,
R.
Pandey
,
A.
Agrawal
,
S. K.
Gupta
, and
R.
Arghavani
,
2014 Symposium on VLSI Technology: Digest of Technical Papers, Honolulu, HI, 9-12 June 2014
(IEEE, Piscataway, NJ,
2014
) p.
978
.
2.
A.
Allain
,
J.
Kang
,
K.
Banerjee
, and
A.
Kis
,
Nat. Mater.
14
,
1195
(
2015
).
4.
J.
Robertson
,
J. Vac. Sci. Technol. B
18
,
1785
(
2000
);
J.
Robertson
J. Vac. Sci. Technol. A
31
,
050821
(
2013
).
6.
7.
F.
Flores
,
E.
Louis
, and
F.
Yndurian
,
J. Phys. C Solid State Phys.
6
,
L465
(
1973
).
8.
J.
Tersoff
,
Phys. Rev. Lett.
52
465
(
1984
);
J.
Tersoff
,
Phys. Rev. B
32
,
6968(R)
(
1985
).
9.
A. M.
Cowley
and
S.
Sze
,
J. Appl. Phys.
36
,
3212
(
1965
).
10.
11.
12.
R. T.
Tung
,
Appl. Phys. Rev.
1
,
011304
(
2014
).
13.
C.
Berthod
,
N.
Binggeli
, and
A.
Balderschi
,
Phys. Rev. B
68
,
085323
(
2003
).
14.
K. Y.
Tse
and
J.
Robertson
,
Phys. Rev. Lett.
99
,
086805
(
2007
).
15.
R. T.
Tung
,
Phys. Rev. Lett.
52
,
461
(
1984
).
16.
R. T.
Tung
,
J. Vac. Sci. Technol. B
11
,
1546
(
1993
).
17.
T.
Nishimura
,
T.
Yajima
, and
A.
Toriumi
,
Appl. Phys. Express
9
,
081201
(
2016
).
18.
C. J.
Palmstrom
,
T. L.
Cheeks
,
H. L.
Gilchrist
,
J. G.
Zhu
,
C. B.
Carter
,
B. J.
Wilkens
, and
R.
Martin
,
J. Vac. Sci. Technol. A
10
,
1946
(
1992
).
19.
A.
Agrawal
,
N.
Shukla
,
K.
Ahmed
, and
S.
Datta
,
Appl. Phys. Lett.
101
,
042108
(
2012
).
20.
S.
Das
,
H. Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
,
100
(
2013
).
21.
Y.
Liu
,
J.
Guo
,
L.
Liao
,
S. J.
Lee
,
M.
Ding
,
I.
Shakir
,
V.
Gambin
,
Y.
Huang
, and
X.
Duan
,
Nature
557
,
696
(
2018
).
22.
D.
Liu
,
Y.
Guo
,
L.
Fang
, and
J.
Robertson
,
Appl. Phys. Lett.
103
,
183113
(
2013
);
Y.
Guo
,
D.
Liu
, and
J.
Robertson
,
ACS Appl. Mater. Interface 7
,
25709
(
2015
).
23.
Z. N.
Weinrich
,
X.
Li
,
S.
Sharma
,
V.
Craciun
,
M.
Ahmed
,
E. A. C.
Sanchez
,
S.
Moffatt
, and
K. S.
Jones
,
Thin Solid Films
685
,
1
(
2019
).
24.
T.
Nishimura
,
X.
Luo
,
S.
Matsumoto
,
T.
Yajima
, and
A.
Toriumi
,
AIP Adv.
8
,
095013
(
2019
).
25.
Y.
Guo
,
H.
Zhang
, and
J.
Robertson
, Extended Abstracts Solid State Devices and Materials Conference, PS 1-06, Tokyo, Japan, 9-13 September 2018 (unpublished).
26.
J. L.
Freeouf
,
Solid State Commun.
33
,
1059
(
1980
).
27.
L.
Lin
,
Y.
Guo
, and
J.
Robertson
,
Appl. Phys. Lett.
101
,
052110
(
2012
).
28.
H.
Li
,
Y.
Guo
, and
J.
Robertson
,
Sci. Rep.
7
,
16669
(
2017
).
29.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
,
M. C.
Payne
, and
Z.
Kristallogr
,
J. Phys. Condens. Matter
220
,
567
(
2005
).
30.
A. M.
Rappe
,
K. M.
Rabe
,
E.
Kaxiras
, and
J. D.
Joannopoulos
,
Phys. Rev. B
41
,
1227
(
1990
).
31.
S. J.
Clark
and
J.
Robertson
,
Phys. Rev. B
82
,
085208
(
2010
).
32.
H. B.
Michaelson
,
J Appl. Phys.
48
,
4729
(
1977
).
33.
W.
Lambrecht
,
A. G.
Petukhov
, and
B. T.
Hemmelman
,
Solid State Commun.
108
,
361
(
1998
).
34.
K. T.
Delaney
,
N.
Spaldin
, and
C.
Van de Walle
,
Phys. Rev. B
81
,
165312
(
2010
).
35.
D. O.
Klenov
,
J. M.
Zide
,
J. D.
Zimmerman
,
A. C.
Gossard
, and
S.
Stemmer
,
Appl. Phys. Lett.
86
,
241901
(
2005
).
36.
Z.
Zhang
,
Y.
Guo
, and
J.
Robertson
,
Appl. Phys. Lett.
116
,
251602
(
2020
).
37.
Z.
Zhang
,
Y.
Guo
, and
J.
Robertson
, “Apparent Fermi level depinning and localized interface states at metal silicide Schottky barriers” (unpublished).
38.
B. D.
Yu
,
Y.
Miyamoto
,
O.
Sugino
,
A.
Sakai
,
T.
Sasaki
, and
T.
Ohno
,
J. Vac. Sci. Technol. B
19
,
1180
(
2001
).
39.
U.
Falke
,
A.
Bleloch
,
M.
Falke
, and
S.
Teichert
,
Phys. Rev. Lett.
92
,
116103
(
2004
).
40.
S.
Vadre
,
T.
Kalka
,
C.
Preinesberger
, and
M.
Dahne-Prietsche
,
Phys. Rev. Lett.
82
,
1927
(
1999
).
41.
S. G.
Louie
,
J.
Chelikowsky
, and
M. L.
Cohen
,
Phys. Rev. B
15
,
2154
(
1977
).
42.
G. P.
Das
,
P.
Blochl
,
O. K.
Andersen
,
N. E.
Christensen
, and
O.
Gunnarsson
,
Phys. Rev. Lett.
63
,
1168
(
1989
).
43.
S.
Ossicini
,
O.
Bisi
, and
C. M.
Bertoni
,
Phys. Rev. B
42
,
5735
(
1990
).
44.
H.
Fujitani
and
S.
Asano
,
Phys. Rev. B
50
,
8681
(
1994
).
45.
J.
Robertson
,
Appl. Phys. Lett.
94
,
152104
(
2009
).
You do not currently have access to this content.