The modification of optical and electronic properties of transition metal dichalcogenides via mechanical deformation has been widely studied. Their ability to withstand large deformations before rupture has enabled large tunability of the bandgap, and further, the spatially varying strain has been shown to control the spatial distribution of the bandgap and lead to effects such as carrier funneling. Monolayer transition metal dichalcogenides exhibit a significant piezoelectric effect that could couple to a spatially inhomogeneous strain distribution to influence electronic and optical behavior. We investigate both experimentally and theoretically an example case of photoluminescence in structures with a strain distribution similar to that employed in single-photon emitters but generated here via nanoindentation. Using a mechanical model for strain induced by nanoindentation, we show that piezoelectricity can result in charge densities reaching 1012 e/cm2 and can generate electrostatic potential variations on the order of ±0.1 V across the suspended monolayer. We analyze the implications of these results for luminescence and exciton transport in monolayer transition metal dichalcogenides with spatially varying strain.

1.
H. P.
Komsa
and
A. V.
Krasheninnikov
,
Phys. Rev. B.
86
,
241201(R)
(
2012
).
2.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
,
ACS Nano
5
,
9703
(
2011
).
3.
H.
Peelaers
and
C. G.
Van de Walle
,
Phys. Rev. B
86
,
241401(R)
(
2012
).
4.
P.
Johari
and
V. B.
Shenoy
,
ACS Nano
6
,
5449
(
2012
).
5.
H. J.
Conley
,
B.
Wang
,
J. I.
Ziegler
,
R. F.
Haglund
, Jr.
,
S. T.
Pantelides
, and
K. I.
Bolotin
,
Nano Lett.
13
,
3626
(
2013
).
6.
C.-H.
Chang
,
X.
Fan
,
S.-H.
Lin
, and
J.-L.
Kuo
,
Phys. Rev. B
88
,
195420
(
2013
).
7.
R.
Frisenda
,
M.
Drüppel
,
R.
Schmidt
,
S. M.
de Vasconcellos
,
D. P.
de Lara
,
R.
Bratschitsch
,
M.
Rohlfing
, and
A.
Castellanos-Gomez
,
npj 2D Mater. Appl.
1
,
10
(
2017
).
8.
J.
Feng
,
X.
Qian
,
C.-W.
Huang
, and
J.
Li
,
Nat. Photonics
6
,
866
(
2012
).
9.
A.
Castellanos-Gomez
,
R.
Roldan
,
E.
Cappelluti
,
M.
Buscema
,
F.
Guinea
,
H. S. J.
van der Zant
, and
G. A.
Steele
,
Nano Lett.
13
,
5361
(
2013
).
10.
H.
Li
 et al.,
Nat. Commun.
6
,
7381
(
2015
).
11.
D. F.
Cordovilla Leon
,
Z.
Li
,
S. W.
Jang
,
C.-H.
Cheng
, and
P. B.
Deotare
,
Appl. Phys. Lett.
113
,
252101
(
2018
).
12.
A.
Branny
,
S.
Kumar
,
R.
Proux
, and
B. D.
Gerardot
,
Nat. Commun.
8
,
15053
(
2017
).
13.
C.
Palacios-Berraquero
 et al.,
Nat. Commun.
8
,
15093
(
2017
).
14.
M.
Blauth
,
M.
Jürgensen
,
G.
Vest
,
O.
Hartwig
,
M.
Prechtl
,
J.
Cerne
,
J. J.
Finley
, and
M.
Kaniber
,
Nano Lett.
18
,
6812
(
2018
).
15.
M. R.
Rosenberger
,
C. K.
Dass
,
H.-J.
Chuang
,
S. V.
Sivaram
,
K. M.
McCreary
,
J. R.
Hendrickson
, and
B. T.
Jonker
,
ACS Nano
13
,
904
(
2019
).
16.
W.
Wu
 et al.,
Appl. Phys. Lett.
114
,
213102
(
2019
).
17.
K.-A. N.
Duerloo
,
M. T.
Ong
, and
E. J.
Reed
,
J. Phys. Chem. Lett.
3
,
2871
(
2012
).
19.
H.
Zhu
 et al.,
Nat. Nanotechnol.
10
,
151
(
2015
).
20.
M. N.
Blonsky
,
H. L.
Zhuang
,
A. K.
Singh
, and
R. G.
Hennig
,
ACS Nano
9
,
9885
(
2015
).
21.
D. L.
Smith
,
Solid State Commun.
57
,
919
(
1986
).
22.
T. F.
Kuech
,
R. T.
Collins
,
D. L.
Smith
, and
C.
Mailhiot
,
J. Appl. Phys.
67
,
2650
(
1990
).
23.
E. T.
Yu
,
G. J.
Sullivan
,
P. M.
Asbeck
,
C. D.
Wang
,
D.
Qiao
, and
S. S.
Lau
,
Appl. Phys. Lett.
71
,
2794
(
1997
).
24.
T.
Takeuchi
,
S.
Sota
,
M.
Katsuragawa
,
M.
Komori
,
H.
Takeuchi
,
H.
Amano
, and
I.
Akasaki
,
Jpn J. Appl. Phys.
236
,
L382
(
1997
).
25.
S. F.
Chichibu
 et al.,
Appl. Phys. Lett.
73
,
2006
(
1998
).
26.
E. T.
Yu
,
X. Z.
Dang
,
P. M.
Asbeck
,
S. S.
Lau
, and
G. J.
Sullivan
,
J. Vac. Sci. Technol. B
17
,
1742
(
1999
).
27.
O.
Ambacher
 et al.,
J. Appl. Phys.
85
,
3222
(
1999
).
28.
J.
Qi
,
Y.-W.
Lan
,
A. Z.
Stieg
,
J.-H.
Chen
,
Y.-L.
Zhong
,
L.-J.
Li
,
C.-D.
Chen
,
Y.
Zhang
, and
K. L.
Wang
,
Nat. Commun.
6
,
7430
(
2015
).
29.
A.
Weston
 et al., “
Atomic reconstruction in twisted bilayers of transition metal dichalcogenides
,”
Nat. Nanotechnol.
(published online,
2020
).
30.
J. C.
Hulteen
and
R. P.
Van Duyne
,
J. Vac. Sci. Technol. A
13
,
1553
(
1995
).
31.
X. H.
Li
,
P. C.
Li
,
D. Z.
Hu
,
D. M.
Schaadt
, and
E. T.
Yu
,
J. Appl. Phys.
114
,
044310
(
2013
).
32.
P.-C.
Li
and
E. T.
Yu
,
J. Opt. Soc. Am. B
30
,
2584
(
2013
).
33.
P.-C.
Li
and
E. T.
Yu
,
J. Appl. Phys.
114
,
133104
(
2013
).
34.
X.
Li
,
P.-C.
Li
,
L.
Ji
,
C.
Stender
,
S. R.
Tatavarti
,
K.
Sablon
, and
E. T.
Yu
,
Sol. Energy Mater. Sol. Cells
143
,
567
(
2015
).
35.
A.
Castellanos-Gomez
,
M.
Buscema
,
R.
Molenaar
,
V.
Singh
,
L.
Janssen
,
H. S. J.
van der Zant
, and
G. A.
Steele
,
2D Mater.
1
,
11002
(
2014
).
36.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano
4
,
2695
(
2010
).
37.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
,
Adv. Funct. Mater.
22
,
1385
(
2012
).
38.
W.
Zhao
,
Z.
Ghorannevis
,
K. K.
Amara
,
J. R.
Pang
,
M.
Toh
,
X.
Zhang
,
C.
Kloc
,
P. H.
Tan
, and
G.
Eda
,
Nanoscale
5
,
9677
(
2013
).
39.
P.
Tonndorf
 et al.,
Opt. Express
21
,
4908
(
2013
).
40.
J. E.
Sader
,
J. W. M.
Chon
, and
P.
Mulvaney
,
Rev. Sci. Instrum.
70
,
3967
(
1999
).
41.
A.
Föppl
,
Vor. über Tech. Mech.
5
,
132
(
1907
).
42.
H.
Hencky
,
Z. Math. Phys.
63
,
311
(
1915
).
43.
N. M.
Bhatia
and
W.
Nachbar
,
Int. J. Nonlinear Mech.
3
,
307
(
1968
).
45.
M. R.
Begley
and
T. J.
Mackin
,
J. Mech. Phys. Solids
52
,
2005
(
2004
).
46.
C.
Jin
,
A.
Davoodabadi
,
J.
Li
,
Y.
Wang
, and
T.
Singler
,
J. Mech. Phys. Solids
100
,
85
(
2017
).
47.
J. L.
Feldman
,
J. Phys. Chem. Solids
37
,
1141
(
1976
).
48.
J.
Kang
,
S.
Tongay
,
J.
Zhou
,
J.
Li
, and
J.
Wu
,
Appl. Phys. Lett.
102
,
012111
(
2013
).
49.
R.
Zhang
,
V.
Koutsos
, and
R.
Cheung
,
Appl. Phys. Lett.
108
,
042104
(
2016
).
50.
S. M.
Kogan
,
Sov. Phys. Solid State
5
,
2069
(
1964
).
51.
C. J.
Brennan
,
R.
Ghosh
,
K.
Koul
,
S. K.
Banerjee
,
N.
Lu
, and
E. T.
Yu
,
Nano Lett.
17
,
5464
(
2017
).
52.
C. J.
Brennan
,
K.
Koul
,
N.
Lu
, and
E. T.
Yu
,
Appl. Phys. Lett.
116
,
053101
(
2020
).
53.
L. N.
Dworsky
,
Introduction to Numerical Electrostatics Using MATLAB
(
Wiley
,
Hoboken
,
NJ
,
2014
), pp.
51
64
.
54.
U.
Komaragiri
,
M. R.
Begley
, and
J. G.
Simmonds
,
J. Appl. Mech.
72
,
203
(
2005
).
55.
J. W.
Christopher
,
B. B.
Goldberg
, and
A. K.
Swan
,
Sci. Rep.
7
,
14062
(
2017
).
56.
T.
Godde
 et al.,
Phys. Rev. B
94
,
165301
(
2016
).
57.
D.
Lloyd
,
X.
Liu
,
J. W.
Christopher
,
L.
Cantley
,
A.
Wadehra
,
B. L.
Kim
,
B. B.
Goldberg
,
A. K.
Swan
, and
J. S.
Bunch
,
Nano Lett.
16
,
5836
(
2016
).
58.
O. B.
Aslan
,
M.
Deng
, and
T. F.
Heinz
,
Phys. Rev. B
98
,
115308
(
2018
).
59.
J.
Wiktor
and
A.
Pasquarello
,
Phys. Rev. B
94
,
245411
(
2016
).
60.
B.
Scharf
,
T.
Frank
,
M.
Gmitra
,
J.
Fabian
,
I.
Žutić
, and
V.
Perebeinos
,
Phys. Rev. B
94
,
245434
(
2016
).
61.
M.
Massicotte
 et al.,
Nat. Commun.
9
,
1633
(
2018
).
You do not currently have access to this content.