Transition metal dichalcogenides such as MoS2 and WS2 are low-dimensional semiconductor materials. MoS2 and WS2 nanotubes and flakes were grown by a chemical transport reaction under a temperature gradient. I2 was used as a transport agent for previously synthesized MoS2 and WS2, respectively. These multilayered nanotubes are indirect bandgap semiconductors with a bandgap depending on their diameter. WS2 flakes were prepared by the sulfurization of thin WOx flakes. To increase the field enhancement of such low-dimensional structures by a higher aspect ratio, two approaches were examined: (a) the MoS2 and WS2 nanotubes were attached individually by a focused ion beam with Pt on dry etched n-type Si pillars and (b) the WS2 flakes were grown directly on the surface of the (n-type and p-type) Si pillars. Integral field emission measurements were performed in a diode configuration with a 50 μm mica spacer in a vacuum chamber at pressures of about 10−9 mbar. At a voltage of 900 V (18 MV/m), the integral emission current from the nanotubes is up to 11 μA for the lateral mounted MoS2 and about 1.3 μA (1.0 μA) for the upright mounted WS2 (MoS2). The onset voltage for a current of 1 nA is about 550 V for MoS2 and 500 V for WS2, respectively. The voltage conversion factor is in the range of 6 × 104–8 × 104 cm−1 for the nanotubes. The mounted MoS2 flakes show a field emission current of about 6 μA at 18 MV/m in contrast to the directly grown WS2 flakes, which show a pronounced saturation regime and, therefore, a lower emission current of about 0.5 μA is reached at 1500 V (25 MV/m). The WS2 flakes show a two times higher (1 × 105 cm−1) voltage conversion factor in comparison to the MoS2 flakes (5 × 104 cm−1). The extracted characteristics of the current-limiting part show a difference in the behavior of the extracted current-limiting characteristics between the lateral (linear) and upright mounted (exponential) nanotubes and the MoS2 flakes. In contrast, the WS2 flakes show charge carrier depletion effects.

1.
S.
Wilfert
and
C.
Edelmann
,
Vacuum
86
,
556
(
2012
).
2.
C.
Langer
,
C.
Prommesberger
,
R.
Ławrowski
,
R.
Schreiner
,
Y.
Huang
, and
J.
She
, Proceedings of the 29th International Vacuum Nanoelectronics Conference, Vancouver, 11–15 July 2016 (IEEE, Vancouver, 2016), pp. 145–146.
3.
C.
Prommesberger
,
M.
Bachmann
,
F.
Düsberg
,
C.
Langer
,
R.
Ławrowski
,
M.
Hofmann
,
A.
Pahlke
, and
R.
Schreiner
,
IEEE Trans. Electron Devices
64
,
5128
(
2017
).
4.
S.
Park
 et al,
IEEE Electron Device Lett.
39
,
1936
(
2018
).
5.
C.
Prommesberger
,
C.
Langer
,
R.
Ławrowski
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
35
,
012201
(
2016
).
6.
S. A.
Guerrera
and
A. I.
Akinwande
,
Nanotechnology
27
,
295302
(
2016
).
7.
J. M.
Bonard
,
M.
Croci
,
C.
Klinke
,
R.
Kurt
,
O.
Noury
, and
N.
Weiss
,
Carbon
40
,
1715
(
2002
).
8.
Z.
Liu
,
G.
Yang
,
Y. Z.
Lee
,
D.
Bordelon
,
J.
Lu
, and
O.
Zhou
,
Appl. Phys. Lett.
89
,
103111
(
2006
).
9.
T.
Ikuno
,
S.
Honda
,
H.
Furuta
,
K.
Aoki
,
T.
Hirao
,
K.
Oura
, and
M.
Katayama
,
Jpn. J. Appl. Phys.
44
,
1655
(
2005
).
10.
S.
Wan
,
L.
Wang
,
J.
Zhang
, and
Q.
Xue
,
Appl. Surf. Sci.
255
,
3817
(
2009
).
11.
F.
He
,
Z.
Li
,
C.
Li
,
H.
Zhou
, and
Q.
Dai
, Proceedings of the 12th International Conference on Solid-State and Integrated Circuit Technology, Guilin, 25–31 October 2014 (IEEE, Guilin, 2014).
12.
C.
Prommesberger
,
R.
Ławrowski
,
C.
Langer
,
M.
Mecani
,
Y.
Huang
,
J.
She
, and
R.
Schreiner
, Proceedings of the International Society for Optics and Photonics, Barcelona, 8–10 May 2017 (SPIE, Barcelona, 2017), pp. 102480H–102480H-8.
13.
A.
Mavalankar
,
J.
Cameron
,
I.
Gomes
,
S.
Sottini
,
M.
Fohler
,
V.
Soloviev
,
G.
Travish
,
K.
Mingard
, and
C.
Minelli
, Proceedings of the 31st International Vacuum Nanoelectronics Conference, Kyoto, 9–13 July 2018 (IEEE, Kyoto, 2018), pp. 82–83.
14.
15.
Ki-Young
Dong
,
Youngmin
,
Seung-Il
Moon
,
Jinwoo
Lee
,
Jinnil
Choi
, and
Byeong-Kwon
Ju
, Proceedings of the 4th International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, 5–8 January 2009 (IEEE, Shenzhen, 2009), pp. 609–611.
16.
Y.
Shen
 et al,
Plasma Sci. Technol.
17
,
129
(
2015
).
17.
C.
Langer
 et al,
J. Vac. Sci. Technol. B
34
,
02G107
(
2016
).
18.
S.
Das
,
M.
Kim
,
J.
Lee
, and
W.
Choi
,
Crit. Rev. Solid State
39
,
231
(
2014
).
19.
T.
Ikuno
and
M.
Hasegawa
,
Appl. Phys. Express
9
,
062201
(
2016
).
20.
S.
Hong
,
A.
Krishnamoorthy
,
C.
Sheng
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
MRS Adv.
3
,
307
(
2018
).
21.
Y.
Ikeda
and
K.
Ueno
,
Jpn. J. Appl. Phys.
59
,
SCCC04-1
(
2019
).
22.
M.
Mattinen
 et al,
Adv. Mater. Interfaces
4
,
1700123
(
2017
).
23.
Y.
Shi
 et al,
Nano Lett.
12
,
2784
(
2012
).
24.
Y.
Jung
,
J.
Shen
,
Y.
Liu
,
J. M.
Woods
,
Y.
Sun
, and
J. J.
Cha
,
Nano Lett.
14
,
6842
(
2014
).
25.
M. R.
Ripoll
,
A.
Tomala
,
C.
Gabler
,
G.
Dražić
,
L.
Pirker
, and
M.
Remškar
,
Nanoscale
10
,
3281
(
2018
).
26.
M.
Remškar
,
M.
Viršek
, and
A.
Mrzel
,
Appl. Phys. Lett.
95
,
133122
(
2009
).
27.
G.
Seifert
,
H.
Terrones
,
M.
Terrones
,
G.
Jungnickel
, and
T.
Frauenheim
,
Phys. Rev. Lett.
85
,
146
(
2000
).
28.
R.
Ławrowski
,
L.
Pirker
,
K.
Kaneko
,
M.
Remskar
,
T.
Ikuno
, and
R.
Schreiner
, Proceedings of the 32nd International Vacuum Nanoelectronics Conference, Cincinnati, 22–26 July 2019 (IEEE, Cincinnati, 2019).
29.
R.
Ławrowski
,
C.
Langer
,
R.
Schreiner
, and
J.
Sellmair
, Proceedings of the 31st International Vacuum Nanoelectronics Conference, Kyoto, 9–13 July 2018 (IEEE, Kyoto, 2018), pp. 200–201.
30.
R.
Lawrowski
,
C.
Langer
,
C.
Prommesberger
,
F.
Dams
,
M.
Bachmann
, and
R.
Schreiner
, Proceedings of the 27th International Vacuum Nanoelectronics Conference, Engelberg, 9–10 July 2014 (IEEE, Engelberg, 2014), pp. 193–194.
31.
M.
Remskar
,
Z.
Skraba
,
F.
Cléton
,
R.
Sanjinés
, and
F.
Lévy
,
Appl. Phys. Lett.
69
,
351
(
1996
).
32.
M.
Viršek
,
A.
Jesih
,
I.
Milošević
,
M.
Damnjanović
, and
M.
Remškar
,
Surf. Sci.
601
,
2868
(
2007
).
33.
W.
Sik Hwang
 et al,
Appl. Phys. Lett.
102
,
043116
(
2013
).
34.
M.
Remìkar
,
Z.
Škraba
,
M.
Regula
,
C.
Ballif
,
R.
Sanjinés
, and
F.
Lévy
,
Adv. Mater.
10
,
246
(
1998
).
35.
W.
Sik Hwang
 et al,
Appl. Phys. Lett.
101
,
013107
(
2012
).
36.
R. G.
Forbes
and
J. H. B.
Deane
,
Phys. Eng. Sci.
463
,
2907
(
2007
).
37.
R. G.
Forbes
, Proceedings of the 28th International Vacuum Nanoelectronics Conference, Guangzhou, 13–17 July 2015 (IEEE, Guangzhou, 2015), pp. 20–21.
38.
F.
Dams
,
A.
Navitski
,
C.
Prommesberger
,
P.
Serbun
,
C.
Langer
,
G.
Müller
, and
R.
Schreiner
,
IEEE Trans. Electron Devices.
59
,
2832
(
2012
).
39.
M.
Bachmann
 et al,
J. Vac. Sci. Technol. B
35
,
02C103
(
2016
).
40.
C.
Langer
,
C.
Prommesberger
,
R.
Lawrowski
,
F.
Dams
, and
R.
Schreiner
,
Adv. Mater. Res.
1024
,
48
(
2014
).
41.
C.
Langer
,
C.
Prommesberger
,
F.
Dams
, and
R.
Schreiner
, Proceedings of the 25th International Vacuum Nanoelectronics Conference, Jeju, 9–13 July 2012 (IEEE, Jeju, 2012), pp. 148–149.
42.
R.
Schreiner
 et al., Proceedings of the 28th International Vacuum Nanoelectronics Conference, Guangzhou, 13–17 July 2015 (IEEE, Guangzhou, 2015), pp. 178–179.
43.
A.
Rai
,
H. C. P.
Movva
,
A.
Roy
,
D.
Taneja
,
S.
Chowdhury
, and
S. K.
Banerjee
,
Crystals
8
,
316
(
2018
).
44.
S.
Reinhardt
,
L.
Pirker
,
C.
Bäuml
,
M.
Remškar
, and
A. K.
Hüttel
,
Phys. Status Solidi R.
13
,
1900251-1
(
2019
).
45.
46.
L.
Britnell
 et al,
Science
340
,
1311
(
2013
).
47.
S.
Choi
,
Z.
Shaolin
, and
W.
Yang
,
J. Korean Phys. Soc.
64
,
1550
(
2014
).
48.
C.
Lan
,
C.
Li
,
Y.
Yin
, and
Y.
Liu
,
Nanoscale
7
,
5974
(
2015
).
49.
M.
Waqas Iqbal
,
M.
Zahir Iqbal
,
M.
Farooq Khan
,
M.
Arshad Kamran
,
A.
Majid
,
T.
Alharbi
, and
J.
Eom
,
RSC Adv.
6
,
24675
(
2016
).
50.
P.
Serbun
,
B.
Bornmann
,
A.
Navitski
,
G.
Müller
,
C.
Prommesberger
,
C.
Langer
,
F.
Dams
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
31
,
02B101
(
2012
).
51.
S.
Mingels
,
V.
Porshyn
,
C.
Prommesberger
,
C.
Langer
,
R.
Schreiner
,
D.
Lützenkirchen-Hecht
, and
G.
Müller
,
J. Appl. Phys.
119
,
165104
(
2016
).
52.
S.
Edler
 et al,
J. Appl. Phys.
122
,
124503
(
2017
).
53.
C.
Langer
,
V.
Bomke
,
M.
Hausladen
,
R.
Ławrowski
,
C.
Prommesberger
,
M.
Bachmann
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
38
,
013202
(
2020
).
You do not currently have access to this content.