GaP-based alloys can be grown lattice-matched to Si, making them an attractive choice for use in Si-based multijunction solar cells. This work focuses on the growth of GaP on Si with the aim to improve the surface quality of GaP. The Si wafers used in this study were of precise (001), (001) 4° offcut toward [110], and (001) 6° offcut toward [110] orientations. GaP of high crystalline quality was grown, and high-resolution x-ray diffraction and atomic force microscopy (AFM) measurements revealed the presence of pits on the surface of GaP. Similar pits were also observed on surface of Si post growth when AFM imaging was done after chemically etching the GaP layers. The use of offcut wafers demonstrated a reduction in the pit density from over 100 μm−2 to values less than 1 μm−2 in both GaP and Si.

2.
I.
Almansouri
,
A.
Ho-Baillie
,
S. P.
Bremner
, and
M. A.
Green
,
IEEE J. Photovoltaics
5
,
968
(
2015
).
3.
S.
Almosni
 et al.,
J. Appl. Phys.
113
,
123509
(
2013
).
4.
J. J.
Becker
,
C. M.
Campbell
,
C. Y.
Tsai
,
Y.
Zhao
,
M.
Lassise
,
X.
Zhao
,
M.
Boccard
,
Z. C.
Holman
, and
Y.
Zhang
,
IEEE J. Photovoltaics
8
,
581
(
2018
).
5.
J.
Noh
,
S.
Im
,
J.
Heo
,
T. N.
Mandal
, and
S.
Seok
,
Nano Lett.
13
,
1764
(
2013
).
6.
S.
Essig
 et al.,
Nat. Energy
2
,
17144
(
2017
).
7.
“Fraunhofer ISE sets efficiency records for silicon-based monolithic triple-junction solar cells,” Semiconductor Today, see http://www.semiconductor-today.com/news_items/2019/aug/fhgise-290819.shtml.
8.
H.
Yonezu
,
Semicond. Sci. Technol.
17
,
762
(
2002
).
9.
T. J.
Grassman
,
M. R.
Brenner
,
S.
Rajagopalan
,
R.
Unocic
,
M.
Mills
,
H.
Fraser
, and
S. A.
Ringel
,
Appl. Phys. Lett.
94
,
232106
(
2009
).
10.
J.
Ohlmann
,
M.
Feifel
,
T.
Rachow
,
J.
Benick
,
S.
Janz
,
F.
Dimroth
, and
D.
Lackner
,
IEEE J. Photovoltaics
6
,
1668
(
2016
).
11.
T. J.
Grassman
,
M. R.
Brenner
,
M.
Gonzalez
,
A. M.
Carlin
,
R. R.
Unocic
,
R. R.
Dehoff
,
M. J.
Mills
, and
S. A.
Ringel
,
IEEE Trans. Electron Devices
57
,
3361
(
2010
).
12.
M.
Weyers
and
M.
Sato
,
Appl. Phys. Lett.
62
,
1396
(
1993
).
13.
J. N.
Baillargeon
,
K. Y.
Cheng
,
G. E.
Hofler
,
P. J.
Pearah
, and
K. C.
Hsieh
,
Appl. Phys. Lett.
60
,
2540
(
1992
).
14.
K.
Yamane
,
M.
Goto
,
K.
Takahashi
,
K.
Sato
,
H.
Sekiguchi
,
H.
Okada
, and
A.
Wakahara
,
Appl. Phys. Express
10
,
4
(
2017
).
15.
Y.
Furukawa
,
H.
Yonezu
,
K.
Ojima
,
K.
Samonji
,
Y.
Fujimoto
,
K.
Momose
, and
K.
Aiki
,
Jpn. J. Appl. Phys.
41
,
528
(
2002
).
16.
Y.
Takagi
,
H.
Yonezu
,
K.
Samonji
,
T.
Tsuji
, and
N.
Ohshima
,
J. Cryst. Growth
187
,
42
(
1998
).
17.
C.
Zhang
,
A.
Boley
,
N.
Faleev
,
D. J.
Smith
, and
C. B.
Honsberg
,
J. Cryst. Growth
503
,
36
(
2018
).
18.
W.
Guo
 et al.,
Appl. Surf. Sci.
258
,
2808
(
2012
).
19.
A. C.
Lin
,
M. M.
Fejer
, and
J. S.
Harris
,
J. Cryst. Growth
363
,
258
(
2013
).
20.
I.
Lucci
 et al.,
Phys. Rev. Mater.
2
,
060401(R)
(
2018
).
21.
H.
Ishikawa
,
K.
Yamamoto
,
T.
Egawa
,
T.
Soga
,
T.
Jimbo
, and
M.
Umeno
,
J. Cryst. Growth
189
,
178
(
1998
).
22.
K.
Yamane
,
T.
Kobayashi
,
Y.
Furukawa
,
H.
Okada
,
H.
Yonezu
, and
A.
Wakahara
,
J. Cryst. Growth
311
,
794
(
2009
).
23.
K.
Volz
,
A.
Beyer
,
W.
Witte
,
J.
Ohlmann
,
I.
Németh
,
B.
Kunert
, and
W.
Stolz
,
J. Cryst. Growth
315
,
37
(
2011
).
24.
C.
Zhang
,
E.
Vaidee
,
S.
Dahal
,
R. R.
King
, and
C. B.
Honsberg
,
J. Vis. Exp.
141
,
e58292
(
2018
).
You do not currently have access to this content.