In this work, the authors quantify field emission properties of cathodes made from carbon nanotube (CNT) fibers. The cathodes were arranged in different configurations to determine the effect of cathode geometry on the emission properties. Various geometries were investigated including (1) flat cut fiber tip, (2) folded fiber, (3) looped fiber, and (4) fibers wound around a cylinder. The authors employ a custom field emission microscope to quantify I-V characteristics in combination with laterally resolved field-dependent electron emission area. Additionally, they look at the very early emission stages, first when a CNT fiber is turned on for the first time, which is then followed by multiple ramp-up/down runs. Upon the first turn on, all fibers demonstrated limited and discrete emission area. During ramping runs, all CNT fibers underwent multiple (minor and/or major) breakdowns, which improved emission properties in that turn-on field decreased and field enhancement factor and emission area both increased. It is proposed that breakdowns are responsible for removing initially undesirable emission sites caused by stray fibers higher than average. This initial breakdown process gives way to a larger emission area that is created when the CNT fiber subcomponents unfold and align with the electric field. The authors' results form the basis for careful evaluation of CNT fiber cathodes for dc or low frequency pulsed power systems in which large uniform area emission is required or for narrow beam high frequency applications in which high brightness is a must.

1.
D.
Shiffler
,
S.
Fairchild
,
W.
Tang
,
B.
Maruyama
,
K.
Golby
,
M.
LaCour
,
M.
Pasquali
, and
N.
Lockwood
,
IEEE Trans. Plasma Sci.
40
,
1871
(
2012
).
2.
A. J.
Theiss
,
C. J.
Meadows
,
R.
Freeman
,
R. B.
True
,
J. M.
Martin
, and
K. L.
Montgomery
,
IEEE Trans. Plasma Sci.
38
,
1239
(
2010
).
3.
S. S.
Dhillon
et al.,
J. Phys. D Appl. Phys.
50
,
043001
(
2017
).
4.
S.
Lewis
et al.,
Proceedings of IPAC, TUPTS077
,
Melbourne, Australia
,
May 2019
(
CERN
,
Geneva
,
2019
), pp. 2098–2100.
5.
S. B.
Fairchild
,
P.
Zhang
,
J.
Park
,
T. C.
Back
,
D.
Marincel
,
Z.
Huang
, and
M.
Pasquali
,
IEEE Trans. Plasma Sci.
47
,
2032
(
2019
).
6.
D.
Shiffler
,
M.
Ruebush
,
M.
Haworth
,
R.
Umstattd
,
M.
LaCour
,
K.
Golby
,
D.
Zagar
, and
T.
Knowles
,
Rev. Sci. Instrum.
73
,
4358
(
2002
).
7.
D.
Shiffler
,
M.
Ruebush
,
M.
LaCour
,
K.
Golby
,
R.
Umstattd
,
M. C.
Clark
,
J.
Luginsland
,
D.
Zagar
, and
M.
Sena
,
Appl. Phys. Lett.
79
,
2871
(
2001
).
8.
N.
Behabtu
et al.,
Science
339
,
182
(
2013
).
9.
D. E.
Tsentalovich
,
R. J.
Headrick
,
F.
Mirri
,
J.
Hao
,
N.
Behabtu
,
C. C.
Young
, and
M.
Pasquali
,
ACS Appl. Mater. Interfaces
9
,
36189
(
2017
).
10.
X.
Wang
,
N.
Behabtu
,
C. C.
Young
,
D. E.
Tsentalovich
,
M.
Pasquali
, and
J.
Kono
,
Adv. Funct. Mater.
24
,
3241
(
2014
).
11.
P.
Zhang
,
J.
Park
,
S. B.
Fairchild
,
N. P.
Lockwood
,
Y. Y.
Lau
,
J.
Ferguson
, and
T.
Back
,
Appl. Sci.
8
,
1175
(
2018
).
12.
S. B.
Fairchild
et al.,
Nanotechnology
26
,
105706
(
2015
).
13.
S. S.
Baturin
and
S. V.
Baryshev
,
Rev. Sci. Instrum.
88
,
033701
(
2017
).
14.
S. S.
Baturin
,
T.
Nikhar
, and
S. V.
Baryshev
,
J. Phys. D Appl. Phys.
52
,
325301
(
2019
).
15.
Field Emission in Vacuum Microelectronics, edited by I. Brodie and P. Schwoebel (Springer US, Boston, MA, 2005), pp. 1–17.
16.
O.
Chubenko
,
S. S.
Baturin
,
K. K.
Kovi
,
A. V.
Sumant
, and
S. V.
Baryshev
,
ACS Appl. Mater. Interfaces
9
,
33229
(
2017
).
17.
V.
Satopaa
,
J.
Albrecht
,
D.
Irwin
, and
B.
Raghavan
, in
2011 31st International Conference on Distributed Computing Systems Workshops
,
Minneapolis, MN
,
20–24 June 2011
(
IEEE
,
New York
,
2011
), pp. 166–171.
18.
H.
Chen
,
V.
Tagliamonti
, and
G. N.
Gibson
,
Phys. Rev. Lett.
109
,
193002
(
2012
).
19.
R. G.
Forbes
,
R. Soc. Open Sci.
6
,
190912
(
2019
).
20.
S. S.
Baturin
,
A. V.
Zinovev
, and
S. V.
Baryshev
, arXiv:1710.03692 (2017).
21.
O.
Chauvet
,
L.
Forro
,
W.
Bacsa
,
D.
Ugarte
,
B.
Doudin
, and
W. A.
de Heer
,
Phys. Rev. B
52
,
R6963
(
1995
).
22.
D.
Estrada
,
S.
Dutta
,
A.
Liao
, and
E.
Pop
,
Nanotechnology
21
,
085702
(
2010
).
23.
B.
Gao
,
Y. F.
Chen
,
M. S.
Fuhrer
,
D. C.
Glattli
, and
A.
Bachtold
,
Phys. Rev. Lett.
95
,
196802
(
2005
).
24.
A. F.
Yatsenko
,
Phys. Status Solidi A
1
,
333
(
1970
).
25.
J. W.
Luginsland
,
A.
Valfells
, and
Y. Y.
Lau
,
Appl. Phys. Lett.
69
,
2770
(
1996
).
You do not currently have access to this content.