The magnetron is a high-efficiency high-power vacuum tube that generates microwaves based on the interaction of a stream of moving electrons under crossed electric and magnetic fields with a series of open coupled cavity resonators. They are widely used as a low-cost microwave source for industrial heating. Traditionally, a thermionic cathode is used as the electron source and a heater is needed to increase the temperature of the cathode up to about 1000 K. In this work, a field emission-based magnetron has been investigated for industrial applications as an easier and more robust configuration. The design and development were performed using a conformal finite-difference time-domain particle-in-cell simulation as implemented in the VSim code. A rising-sun configuration has been optimized and the corresponding operating condition has been determined to achieve an efficiency of up to ∼80%. The rising-sun magnetron operating at a frequency of 2.45 GHz can give an output power of 3 kW, serving as a good replacement of existing industrial magnetrons.

1.
M. Q.
Liu
,
C. L.
Liu
,
M.
Fuks
, and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
42
,
3283
(
2014
).
2.
H. J.
Kim
,
J. U.
Shin
, and
J. J.
Choi
,
IEEE Trans. Plasma Sci.
30
,
956
(
2002
).
3.
J. I.
Kim
,
S. G.
Jeon
,
Y. S.
Jin
, and
C. H.
Shon
,
Jpn. J. Appl. Phys.
46
,
6853
(
2007
).
4.
H. J.
Kim
and
J. J.
Choi
,
IEEE Trans. Dielectr. Electr. Insul.
14
,
1045
(
2007
).
5.
M. C.
Lin
,
C.
Nieter
,
P. H.
Stoltz
, and
D. N.
Smithe
,
Open Plasma Phys. J.
3
,
48
(
2010
).
6.
J.
Browning
,
S.
Fernandez-Gutierrez
,
M. C.
Lin
,
D. N.
Smithe
, and
J.
Watrous
,
Appl. Phys. Lett.
104
,
233507
(
2014
).
7.
S.
Fernandez-Gutierrez
,
J.
Browning
,
M. C.
Lin
,
D. N.
Smithe
, and
J.
Watrous
,
J. Vac. Sci. Technol. B
32
,
061205
(
2014
).
8.
S.
Fernandez-Gutierrez
,
J.
Browning
,
M. C.
Lin
,
D. N.
Smithe
, and
J.
Watrous
,
J. Vac. Sci. Technol. B
33
,
031203
(
2015
).
9.
S.
Fernandez-Gutierrez
,
J.
Browning
,
M. C.
Lin
,
D. N.
Smithe
, and
J.
Watrous
,
J. Appl. Phys.
119
,
044501
(
2016
).
10.
S. A.
Guerrera
and
A. I.
Akinwande
,
IEEE Trans. Electron Devices
37
,
96
(
2016
).
11.
C.
Nieter
and
J. R.
Cary
,
J. Comput. Phys.
196
,
448
(
2004
).
12.
C.
Nieter
,
J. R.
Cary
,
G. R.
Werner
,
D. N.
Smithe
, and
P. H.
Stoltz
,
J. Comput. Phys.
228
,
7902
(
2009
).
13.
Y. M.
Saveliev
,
B. A.
Kerr
,
M.
Harbour
,
S. C.
Douglas
, and
W.
Sibbett
,
IEEE Trans. Plasma Sci.
30
,
938
(
2002
).
14.
Y. Y.
Lau
,
J. W.
Luginsland
,
K. L.
Cartwright
,
D. H.
Simon
,
W.
Tang
,
B. W.
Hoff
, and
R. M.
Gilgenbach
,
Phys. Plasmas
17
,
033102
(
2010
).
15.
A. D.
Andreev
and
K. J.
Hendricks
,
IEEE Trans. Plasma Sci.
40
,
2267
(
2012
).
16.
M.
Liu
,
C.-L.
Liu
,
Z.
Huang
,
E.
Schamiloglu
,
M.
Fuks
, and
W.
Jiang
,
Phys. Plasmas
23
,
052104
(
2016
).
17.
M.
Liu
,
M.
Fuks
,
E.
Schamiloglu
, and
C.-L.
Liu
,
IEEE Trans. Plasma Sci.
40
,
1569
(
2012
).
18.
M. C.
Lin
,
P. H.
Stoltz
,
D.
Smithe
,
H.
Song
,
H.
Jong
,
J. J.
Choi
,
S. J.
Kim
, and
S. H.
Jang
,
J. Korean Phys. Soc.
60
,
731
(
2012
).
You do not currently have access to this content.