The components for a silicon chip electron source were fabricated by laser micromachining using pulsed laser ablation and wet chemical cleaning and etching dips. The field emission electron source consists of a silicon field emission cathode with 4 × 4 conical shaped emitters with a height of 250 μm and a tip radius of about 50 nm, a 50 μm thick laser-structured mica spacer, and a silicon grid electrode with a grid periodicity of 200 μm and a bar width of 50 μm. These three components are combined to a single chip with the size of 14 × 10 mm2 and the thickness of 1 mm to form the electron source. Several of these devices were characterized in ultrahigh vacuum. Onset voltages of about 165 V and cathode currents of about 15 μA for voltages lower than 350 V were observed. Operating the electron source with an anode voltage of 500 V and an extraction grid voltage of 300 V yielded a cathode current of 4.5 μA ± 8.9%, an anode current of 4.0 μA ± 9.6%, and a corresponding grid transmittance of 89%. Regulating the anode current by the extraction grid voltage, an extremely stable anode current of 5.0 μA ± 0.017% was observed. A long-term measurement over 120 h was performed, and no significant degradation or failure was observed.

1.
S.
Wilfert
and
C.
Edelmann
,
Vacuum
86
,
556
(
2012
).
2.
C.
Langer
,
C.
Prommesberger
,
R.
Ławrowski
,
R.
Schreiner
,
Y.
Huang
, and
J.
She
,
Proceedings of the 29th International Vacuum Nanoelectronics Conference,
Vancouver, 11–15 July (IEEE,
Vancouver, Canada
,
2016
), pp. 145–146.
3.
A.
Basu
,
M. E.
Swanwick
,
A. A.
Fomani
, and
L. F.
Velásquez-García
,
J. Phys. D Appl. Phys.
48
,
225501
(
2015
).
4.
C.
Prommesberger
,
M.
Bachmann
,
F.
Düsberg
,
C.
Langer
,
R.
Lawrowski
,
M.
Hofmann
,
A.
Pahlke
, and
R.
Schreiner
,
IEEE Trans. Electron Devices
64
,
5128
(
2017
).
5.
E.
Bunert
,
A.
Heptner
,
T.
Reinecke
,
A. T.
Kirk
, and
S.
Zimmermann
,
Rev. Sci. Instrum.
88
,
024102
(
2017
).
6.
Y.
Li
,
Y.
Sun
, and
J. T. W.
Yeow
,
Nanotechnology
26
,
242001
(
2015
).
7.
W.
Lei
,
Z.
Zhu
,
C.
Liu
,
X.
Zhang
,
B.
Wang
, and
A.
Nathan
,
Carbon
94
,
687
(
2015
).
8.
E.
Gidcumb
,
B.
Gao
,
J.
Shan
,
C.
Inscoe
,
J.
Lu
, and
O.
Zhou
,
Nanotechnology
25
,
245704
(
2014
).
9.
J.
Bieker
,
F.
Roustaie
,
H. F.
Schlaak
,
C.
Langer
,
R.
Schreiner
,
M.
Lotz
, and
S.
Wilfert
,
J. Vac. Sci. Technol. B
36
,
02C105
(
2018
).
10.
J. L.
Duan
,
D. Y.
Lei
,
F.
Chen
,
S. P.
Lau
,
W. I.
Milne
,
M. E.
Toimil-Molares
,
C.
Trautmann
, and
J.
Liu
,
ACS Appl. Mater. Interfaces
8
,
472
(
2016
).
11.
P.
Serbun
,
F.
Jordan
,
A.
Navitski
,
G.
Müller
,
I.
Alber
,
M. E.
Toimil-Molares
, and
C.
Trautmann
,
Eur. Phys. J.-Appl. Phys.
58
,
10402
(
2012
).
12.
A.
Dangwal
,
C. S.
Pandey
,
G.
Müller
,
S.
Karim
,
T. W.
Cornelius
, and
C.
Trautmann
,
Appl. Phys. Lett.
92
,
063115
(
2008
).
13.
F.
Dams
,
A.
Navitski
,
C.
Prommesberger
,
P.
Serbun
,
C.
Langer
,
G.
Müller
, and
R.
Schreiner
,
IEEE Trans. Electron Devices
59
,
2832
(
2012
).
14.
C.
Langer
,
R.
Lawrowski
,
C.
Prommesberger
,
F.
Dams
,
P.
Serbun
,
M.
Bachmann
,
G.
Müller
, and
R.
Schreiner
,
Proceedings of the 27th International Vacuum Nanoelectronics Conference
, Engelberg, 6–10 July (IEEE,
Engelberg
,
2014
), pp. 222–223.
15.
L. F.
Velasquez-Garcia
,
S. A.
Guerrera
,
Y.
Niu
, and
A. I.
Akinwande
,
IEEE Trans. Electron Devices
58
,
1783
(
2011
).
16.
J.
Shaw
and
J.
Itoh
,
Vacuum Microelectronics
, edited by
W
.
Zhu
(
Wiley
,
New York
,
2001
), pp.
187
246
.
17.
C.
Prommesberger
,
C.
Langer
,
R.
Ławrowski
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
35
,
012201
(
2016
).
18.
C.
Langer
 et al,
J. Vac. Sci. Technol. B
34
,
02G107
(
2016
).
19.
H.-C.
Wu
,
T.-Y.
Tsai
,
F.-H.
Chu
,
N.-H.
Tai
,
H.-N.
Lin
,
H.-T.
Chiu
, and
C.-Y.
Lee
,
J. Phys. Chem. C
114
,
130
(
2010
).
20.
T. C.
Cheng
,
J.
Shieh
,
W. J.
Huang
,
M. C.
Yang
,
M. H.
Cheng
,
H. M.
Lin
, and
M. N.
Chang
,
Appl. Phys. Lett.
88
,
263118
(
2006
).
21.
Q.
,
J.
Wang
,
C.
Liang
,
L.
Zhao
, and
Z.
Jiang
,
Opt. Lett.
38
,
1274
(
2013
).
22.
A.
Evtukh
,
A.
Medvid
,
P.
Onufrijevs
,
M.
Okada
, and
H.
Mimura
,
J. Vac. Sci. Technol. B
28
,
C2B11
(
2010
).
23.
A.
Serpenguzel
,
A.
Kurt
,
I.
Inanç
,
J.
Carey
, and
E.
Mazur
,
J. Nanophotonics
2
,
021770
(
2008
).
24.
V.
Zorba
,
P.
Tzanetakis
,
C.
Fotakis
,
E.
Spanakis
,
E.
Stratakis
,
D. G.
Papazoglou
, and
I.
Zergioti
,
Appl. Phys. Lett.
88
,
081103
(
2006
).
25.
V.
Zorba
,
I.
Alexandrou
,
I.
Zergioti
,
A.
Manousaki
,
C.
Ducati
,
A.
Neumeister
,
C.
Fotakis
, and
G. A. J.
Amaratunga
,
Thin Solid Films
453–454
,
492
(
2004
).
26.
A. V.
Karabutov
,
V. D.
Frolov
,
E. N.
Loubnin
,
A. V.
Simakin
, and
G. A.
Shafeev
,
Appl. Phys. A
76
,
413
(
2003
).
27.
J. E.
Carey
,
L.
Zhao
, and
C.
Wu
,
Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170)
, Baltimore, 11 May (IEEE,
2001
), pp. 555–556.
28.
J. P.
Moening
and
D. G.
Georgiev
,
J. Appl. Phys.
107
,
014307
(
2010
).
29.
L.
Nilsson
,
O.
Groening
,
C.
Emmenegger
,
O.
Kuettel
,
E.
Schaller
,
L.
Schlapbach
,
H.
Kind
,
J.-M.
Bonard
, and
K.
Kern
,
Appl. Phys. Lett.
76
,
2071
(
2000
).
30.
D.
Cai
and
L.
Liu
,
AIP Adv.
3
,
122103
(
2013
).
31.
Handbook of Microlithography, Micromachining, and Microfabrication: Micromachining and Microfabrication
, edited by
P.
Rai-Choudhury
(
SPIE
, Bellingham,
1997
).
32.
R.
Schreiner
 et al,
Proceedings of the 28th International Vacuum Nanoelectronics Conference
, Guangzhou, 13–17 July (IEEE,
Guangzhou,
2015
), pp.
178
179
.
33.
R. G.
Forbes
and
J. H. B.
Deane
,
Proc. R. Soc. A Math. Phys. Eng. Sci.
463
,
2907
(
2007
).
34.
I.
Ruge
and
H.
Mader
,
Halbleiter-Technologie
(
Springer
,
Berlin
,
1991
).
35.
J. D.
Levine
,
R.
Meyer
,
R.
Baptist
,
T. E.
Felter
, and
A. A.
Talin
,
J. Vac. Sci. Technol. B
13
,
474
(
1995
).
36.
J. W.
Luginsland
,
A.
Valfells
, and
Y. Y.
Lau
,
Appl. Phys. Lett.
69
,
2770
(
1996
).
37.
M.
Bachmann
,
F.
Dams
,
F.
Düsberg
,
M.
Hofmann
,
A.
Pahlke
,
C.
Langer
,
R.
Ławrowski
,
C.
Prommesberger
, and
R.
Schreiner
,
Proceedings of the 30th International Vacuum Nanoelectronics Conference
, Regensburg, 10–14 July (IEEE,
Regensburg
,
2017
), pp. 66–67.
38.
S.
Edler
 et al,
J. Appl. Phys.
122
,
124503
(
2017
).
39.
W. I.
Karain
,
L. V.
Knight
,
D. D.
Allred
, and
A.
Reyes-Mena
,
J. Vac. Sci. Technol. A
12
,
2581
(
1994
).
40.
M.
Bachmann
,
F.
Dams
,
F.
Düsberg
,
M.
Hofmann
,
A.
Pahlke
,
C.
Langer
,
R.
Lawrowski
,
C.
Prommesberger
, and
R.
Schreiner
,
Proceedings of the 28th International Vacuum Nanoelectronics Conference
, Guangzhou, 13–17 July (IEEE,
Guangzhou
,
2015
), pp. 204–205.
41.
K.
Hata
,
A.
Takakura
, and
Y.
Saito
,
Surf. Sci.
490
,
296
(
2001
).
42.
R.
Baptist
,
C.
Bieth
, and
C.
Py
,
J. Vac. Sci. Technol. B
14
,
2119
(
1996
).
43.
J.
Sellmair
,
K.
Edinger
, and
H. W. P.
Koops
,
Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)
, Cambridge, 12–16 July (IEEE,
2004
), pp. 148–149.
You do not currently have access to this content.