In this work, the influence of specific switching algorithms on device-to-device (D2D) variability of the forming process, in an integrated Al-doped HfO2 1T-1R 4 kbit resistive random access memory array, is investigated. The resistive devices are programed by using two different algorithms: the incremental step pulse and verify algorithm (ISPVA) at different temperatures and the constant amplitude pulse and verify algorithm (CAPVA) at different voltage amplitudes. The stabilized forming currents of both algorithms are compared in terms of their distributions, yields, and dispersions. The D2D distributions of the forming voltages of ISPVA and the forming times of CAPVA are fitted by Weibull distributions. The obtained Weibull parameters provide a link with the statistics governing the process. Finally, the authors discuss the importance of the ISPVA, CAPVA, temperature, and voltage amplitudes to improve the reliability of the forming process.

1.
H. Y.
Lee
 et al.,
IEEE International Electron Devices Meeting (IEDM),
15–17 Dec. 2008 (
IEEE
,
San Francisco, CA
,
2008
), pp.
297
300
.
2.
M.
Ueki
 et al.,
Symposium on VLSI Technology,
16–18 June 2015 (IEEE, Kyoto, Japan,
2015
), pp.
T108
T109
.
3.
H.-S. P.
Wong
 et al.,
Proc. IEEE
100
, 6 (
2012
).
4.
E.
Pérez
,
A.
Grossi
,
C.
Zambelli
,
P.
Olivo
,
R.
Roelofs
, and
C.
Wenger
,
IEEE Electron Device Lett.
38
,
175
(
2017
).
5.
A.
Grossi
 et al.,
IEEE Trans. Electron Devices
62
,
2502
(
2015
).
6.
R.
Degraeve
,
A.
Fantini
,
N.
Raghavan
,
L.
Goux
,
S.
Clima
,
B.
Govoreanu
,
A.
Belmonte
,
D.
Linten
, and
M.
Jurczak
,
Microelectron. Eng.
147
,
171
(
2015
).
7.
B.
Butcher
,
G.
Bersuker
,
K. G.
Young-Fisher
,
D .C.
Gilmer
,
A.
Kalantarian
,
Y.
Nishi
,
R.
Geer
,
P. D.
Kirsch
, and
R.
Jammy
,
IEEE International Memory Workshop (IMW),
20–23 May 2012 (IEEE, Milan, Italy,
2012
), pp.
1
4
.
8.
X.
Chen
,
A.
Bandyopadhyay
,
B.
Le
,
R.
Scheuerlein
, and
L.
Xiao
, U.S. patent 8,289,749 (16 October
2012
).
9.
A.
Grossi
,
C.
Zambelli
,
P.
Olivo
,
E.
Miranda
,
V.
Stikanov
,
C.
Walczyk
, and
C.
Wenger
,
Solid-State Electron.
115
,
17
(
2016
).
10.
T. K.
Chien
,
L. Y.
Chiou
,
S. S.
Sheu
,
J. C.
Lin
,
C. C.
Lee
,
T. K.
Ku
,
M. J.
Tsai
, and
C. I.
Wu
,
IEEE J. Emerg. Sel. Top. Circuits Syst.
6
,
247
(
2016
).
11.
C. S.
Peng
,
W. Y.
Chang
,
Y. H.
Lee
,
M. H.
Lin
,
F.
Chen
, and
M. J.
Tsai
,
Electrochem. Solid State Lett.
15
,
88
(
2012
).
12.
E.
Pérez
,
A.
Grossi
,
C.
Zambelli
,
M. K.
Mahadevaiah
,
P.
Olivo
, and
Ch.
Wenger
,
IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP),
16–18 July 2018 (IEEE, Ann Arbor, MI,
2018
), pp.
1
3
.
13.
C.
Walczyk
 et al.,
IEEE Trans. Electron Devices
58
,
3124
(
2011
).
14.
E.
Perez
,
C.
Wenger
,
A.
Grossi
,
C.
Zambelli
,
P.
Olivo
, and
R.
Roelofs
,
J. Vac. Sci. Technol. B
35
,
01A103
(
2017
).
15.
R.
Waser
,
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices
(
Wiley
,
New York
,
2012
).
16.
M.
Zhang
 et al.,
IEEE Electron Device Lett.
36
,
1303
(
2015
).
17.
E. Y.
Wu
,
IEEE Trans. Electron Devices
49
,
2141
(
2002
).
18.
A.
Padovani
,
L.
Larcher
,
O.
Pirrotta
,
L.
Vandelli
, and
G.
Bersuker
,
IEEE Trans. Electron Devices
62
,
1998
(
2006
).
19.
S.
Long
,
X.
Lian
,
C.
Cagli
,
L.
Perniola
,
E.
Miranda
,
M.
Liu
, and
J.
Sune
,
IEEE Electron Device Lett.
34
,
999
(
2013
).
20.
X.
Guan
,
S.
Yu
, and
H. S. P.
Wong
,
IEEE Trans. Electron Devices
59
,
1172
(
2012
).
You do not currently have access to this content.