In dry plasma silicon etching, it is desired to have a high etching rate, a high etching selectivity to mask material, a vertical or controllable sidewall profile, and a smooth sidewall. Since the standard Bosch process (switching between SF6 and C4F8 gases) leads to a wavy/rough sidewall profile, the nonswitching pseudo-Bosch process is developed to give a smooth sidewall needed for nanostructure fabrication. In the process, SF6 and C4F8 gases are introduced to the chamber simultaneously. Here, the authors show that by introducing a periodic oxygen (O2) plasma cleaning step, that is, switching between SF6/C4F8 etching and O2 cleaning, the silicon etching rate can be significantly improved (by up to ∼55%, from 139 to 216 nm/min) without any adverse effect. This is mainly because O2 plasma can remove the fluorocarbon polymer passivation layer at the surface. The etching and cleaning step durations were varied from 5 s to 40 min and from 0 to 60 s, respectively. The fastest etching rates were obtained when the cleaning step takes roughly 10% of the total etching time.

1.
J.
Goldberger
,
A. I.
Hochbaum
,
R.
Fan
, and
P.
Yang
,
Nano Lett.
6
,
973
(
2006
).
2.
V.
Schmidt
,
H.
Riel
,
S.
Senz
,
S.
Karg
,
W.
Riess
, and
U.
Gösele
,
Small
2
,
85
(
2006
).
3.
A. A.
Talin
,
L. L.
Hunter
,
F.
Léonard
, and
B.
Rokad
,
Appl. Phys. Lett.
89
,
153102
(
2006
).
4.
M. H.
Huang
,
S.
Mao
,
H.
Feick
,
H.
Yan
,
Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P.
Yang
,
Science
292
,
1897
(
2001
).
5.
Y.
Cui
,
Q.
Wei
,
H.
Park
, and
C. M.
Lieber
,
Science
293
,
1289
(
2001
).
6.
F.
Lärmer
and
A.
Urban
,
Microelectron. Eng.
67
,
349
(
2003
).
7.
M. A.
Blauw
,
T.
Zijlstra
, and
E.
Van der Drift
,
J. Vac. Sci. Technol. B
19
,
2930
(
2001
).
8.
J. W.
Coburn
and
H. F.
Winters
,
Appl. Phys. Lett.
55
,
2730
(
1989
).
9.
G. S.
Hwang
and
K. P.
Giapis
,
J. Appl. Phys.
82
,
566
(
1997
).
10.
S.
Tabara
,
Jpn. Appl. Phys.
38
,
3753
(
1999
).
11.
I. W.
Rangelow
,
J. Vac. Sci. Technol. A
21
,
1550
(
2003
).
12.
A.
Ayari-Kanoun
,
F.
Aydinoglu
,
B.
Cui
, and
F.
Saffih
,
J. Vac. Sci. Technol. B
34
,
06KD01
(
2016
).
13.
B.
Wu
,
A.
Kumar
, and
S.
Pamarthy
,
Appl. Phys.
108
,
051101
(
2010
).
14.
M. F.
Doemling
,
N. R.
Rueger
, and
G. S.
Oehrlein
,
Appl. Phys. Lett.
68
,
10
(
1996
).
15.
M. A.
Blauw
,
G.
Craciun
,
W. G.
Sloof
,
P. J.
French
, and
E.
van Der Drift
,
J. Vac. Sci. Technol. B
20
,
3106
(
2002
).
16.
M.
Puech
,
N.
Launay
,
N.
Arnal
,
P.
Godinat
, and
J. M.
Gruffat
,
A novel plasma release process and a super high aspect ratio using ICP etching for MEMS
,
SEMICON, Chiba, Japan
, 3–5 December 2003 (
SEMICON
), Vol. 16, pp.
25
30
.
17.
R.
Abdolvand
and
F.
Ayazi
,
Sens. Actuators A
144
,
109
(
2008
).
18.
H.
Oshio
,
T.
Ichiki
, and
Y.
Horiike
,
J. Electrochem. Soc.
147
,
4273
(
2000
).
19.
D. R.
Wright
,
D. C.
Hartman
,
U. C.
Sridharan
,
M.
Kent
,
T.
Jasinski
, and
S.
Kang
,
J. Vac. Sci. Technol. A
10
,
1065
(
1992
).
20.
H.
Jansen
,
M.
de Boer
,
S.
Unnikrishnan
,
M. C.
Louwerse
, and
M.
Elwenspoek
,
J. Micromech. Microeng.
19
,
033001
(
2009
).
21.
H.
Jansen
,
M.
de Boer
, and
M.
Elwenspoek
,
The black silicon method. VI. High aspect ratio trench etching for MEMS applications
,
Proceedings of IEEE MEMS
, San Diego, CA, 11–15 February 1996 (
IEEE
), p.
250
.
22.
M.
Boufnichel
,
S.
Aachboun
,
F.
Grangeon
,
P.
Lefaucheux
, and
P.
Ranson
,
J. Vac. Sci. Technol. B
20
,
1508
(
2002
).
23.
M.
Schaepkens
and
G. S.
Oehrlein
,
J. Electrochem. Soc.
148
,
C211
(
2001
).
24.
F.
Saffih
,
C.
Con
,
A.
Alshammari
,
M.
Yavuz
, and
B.
Cui
,
J. Vac. Sci. Technol. B
32
,
06FI04
(
2014
).
You do not currently have access to this content.