In this paper, the authors describe the effectiveness of thermal annealing in vacuum for quantum efficiency (QE) recovery from Cs/O-activated GaN and GaAs photocathodes. The QE of Cs/O-activated GaN photocathodes at 3.4 eV dropped from 1.0% to <0.001% upon exposure to nitrogen and then increased to 0.6% upon annealing. On the other hand, the QE of Cs/O-activated GaAs at 1.42 eV did not increase after annealing. In addition, after Cs/O activation, the sample was exposed to normal laboratory air and installed in an X-ray photoemission spectroscopy system. Upon annealing at 330 °C, three key results were confirmed as follows: (1) the work function decreased by 0.32 eV, (2) the chemical states of Cs 4d and Ga 3d were unchanged, and (3) the intensities of O 1s and C 1s on the high-binding-energy side decreased. In conclusion, the experimental results indicate that the annealing recovers the QE of Cs/O-activated GaN photocathode.

1.
W. E.
Spicer
,
Phys. Rev.
112
,
114
(
1958
).
2.
W. E.
Spicer
,
Appl. Phys.
12
,
115
(
1957
).
3.
D. A.
Orlov
,
U.
Weigel
,
D.
Schwalm
,
A. S.
Terekhov
, and
A.
Wolf
,
Nucl. Instrum. Methods Phys. Res. A
532
,
418
(
2004
).
4.
A. W.
Baum
,
W. E.
Spicer
,
R. F. W.
Pease
,
K. A.
Costello
, and
V. W.
Aebi
,
Proc. SPIE
2550
,
189
(
1995
).
5.
J.
Grames
,
P.
Adderley
,
L.
Brittian
,
D.
Charles
,
J.
Clark
,
J.
Hansknecht
,
M.
Poelker
,
M.
Stutzman
, and
K.
Surles-Law
,
Proceedings of 2005 Particle Accelerator Conference,
16–20 May
,
Knoxville
(IEEE, Piscataway, 2005), p.
2875
.
6.
A. W.
Baum
,
W. E.
Spicer
,
R. F. W.
Pease
,
K. A.
Costello
, and
V. W.
Aebi
,
Proc. SPIE
2522
,
208
(
1995
).
7.
S. L. D.
Collaboration
,
Phys. Rev. Lett.
70
,
2515
(
1993
).
8.
N.
Chanlek
,
J. D.
Herbert
,
R. M.
Jones
,
L. B.
Jones
,
K. J.
Middleman
, and
B. L.
Militsyn
,
J. Phys. D Appl. Phys.
47
,
055110
(
2014
).
9.
T.
Nishitani
,
M.
Tabuchi
,
H.
Amano
,
T.
Maekawa
,
M.
Kuwahara
, and
T.
Meguro
,
J. Vac. Sci. Technol. B
32
,
06F901
(
2014
).
10.
F.
Machuca
,
Z.
Liu
,
J. R.
Maldonado
,
S. T.
Coyle
,
P.
Pianetta
, and
R. F. W.
Pease
,
J. Vac. Sci. Technol. B
22
,
3565
(
2004
).
11.
T.
Nishitani
,
M.
Tabuchi
,
K.
Motoki
,
T.
Takashima
,
A.
Era
, and
Y.
Takeda
,
J. Phys. Conf. Ser.
298
,
012010
(
2011
).
12.
D.
Sato
,
T.
Nishitani
,
Y.
Honda
, and
H.
Amano
,
Jpn. J. Appl. Phys.
55
,
05FH05
(
2016
).
13.
M.
Kuriki
,
C.
Shonaka
,
H.
Iijima
,
D.
Kubo
,
H.
Okamoto
,
H.
Higaki
,
K.
Ito
,
M.
Yamamoto
,
T.
Konomi
,
S.
Okumi
,
M.
Kuwahara
, and
T.
Nakanishi
,
Nucl. Instrum. Methods Phys. Res., Sect. A
637
,
S87
(
2011
).
14.
N.
Isomura
,
M.
Kamada
,
T.
Nonaka
,
E.
Nakamura
,
T.
Takano
,
H.
Sugiyama
, and
Y.
Kimoto
,
J. Synchrotron Radiat.
23
,
281
(
2016
).
15.
G. A.
Mulhollan
,
A. V.
Subashiev
,
J. E.
Clendenin
,
E. L.
Garwin
,
R. E.
Kirby
,
T.
Maruyama
, and
R.
Prepost
,
Phys. Lett. A
282
,
309
(
2001
).
16.
D.
Briggs
,
Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy
(
ICI Ltd. Corporate Laboratory
,
Heyden, London
,
1977
).
17.
J.
Landoulsi
,
M. J.
Genet
,
S.
Fleith
,
Y.
Touré
,
I.
Liascukiene
,
C.
Méthivier
, and
P. G.
Rouxhet
,
Appl. Surf. Sci.
383
,
7183
(
2016
).
18.
J.
Hrbek
,
Y. W.
Yang
, and
J. A.
Rodriguez
,
Surf. Sci.
296
,
164
(
1993
).
19.
H.
Iijima
,
M.
Kuriki
, and
Y.
Masumoto
, in Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan, August 1–3, Tsukuba (Particle Accelerator Society of Japan, Tokyo,
2011
), p.
3158
.
20.
M. G.
Burt
and
V.
Heine
,
J. Phys. C Solid State Phys.
11
,
961
(
1978
).
You do not currently have access to this content.