A line edge roughness analysis software is developed based on the Canny edge detection algorithm with a double threshold, where threshold values are obtained by Otsu’s method. The performance of the software is demonstrated on features with a 200-nm nominal pitch generated by current-controlled, field-emission scanning probe lithography. Two lithographic modes are applied: (a) direct self-development positive mode and (b) image reversal mode. Atomic force imaging is used to analyze the line edge roughness. This is followed by a benchmarking study, where findings are compared to those provided by metroler software (Fractilia, LLC). This work is the first report on both line edge roughness involving imaging using the same exposure setup and latent image line edge roughness—made possible thanks to the resolving power of imaging through noncontact AFM. The authors are presenting a comparison of patterning through image reversal of the calixarene molecular glass resist from negative-tone to positive-tone as well as direct-write. In image reversal, a close match was observed between the proposed analysis and metroler software for line edge roughness and linewidth.

1.
C. A.
Mack
,
IEEE Trans. Semicond. Manuf.
24
,
202
(
2011
).
2.
H. N.
Khan
,
D. A.
Hounshell
, and
E. R. H.
Fuchs
,
Nat. Electron.
1
,
14
(
2018
).
3.
“Metrology,” International Roadmap for Devices and Systems (IRDS™) 2017 Edition, see https://irds.ieee.org/editions/2017/metrology (
2019
).
4.
“Lithography,” International Roadmap for Devices and Systems (IRDS™) 2017 Edition, see https://irds.ieee.org/editions/2017/lithography (
2019
).
5.
nanoLER™—Nanometrisis
, see http://www.nanometrisis.com/products-services/nanoler/ (
2019
).
7.
G. F.
Lorusso
,
V.
Rutigliani
,
F.
Van Roey
, and
C. A.
Mack
,
Microelectron. Eng.
190
,
33
(
2018
).
8.
M.
Fang
,
G.
Yue
, and
Q.
Yu
,
Int. Symp. Inf. Process.
2
,
109
(
2009
).
9.
I. W.
Rangelow
 et al,
Proc. SPIE
10584
,
1058406
(
2018
).
10.
T. T.
Gotszalk
 et al,
J. Vac. Sci. Technol. B
37
,
030803
(
2019
).
11.
R.
Garcia
,
A. W.
Knoll
, and
E.
Riedo
,
Nat. Nanotechnol.
9
,
577
(
2014
).
12.
S.
Lenk
,
M.
Kaestner
,
C.
Lenk
,
Y.
Krivoshapkina
, and
I. W.
Rangelow
,
2017 30th International Vacuum Nanoelectronics Conference (IVNC 2017)
,
10–14 July 2017
(
IEEE
,
Regensburg, Germany
), p.
108
.
13.
I. W.
Rangelow
 et al,
J. Vac. Sci. Technol. B
34
,
06K202
(
2016
).
14.
M.
Kaestner
,
M.
Hofer
, and
I. W.
Rangelow
,
Proc. SPIE
8680
,
868019
(
2013
).
15.
C.
Lenk
 et al,
J. Vac. Sci. Technol. B
37
,
021603
(
2019
).
16.
J. M.
Shaw
,
J. D.
Gelorme
,
N. C.
LaBianca
,
W. E.
Conley
, and
S. J.
Holmes
,
IBM J. Res. Dev.
41
,
81
(
1997
).
17.
J.
Fujita
,
Y.
Ohnishi
,
Y.
Ochiai
,
E.
Nomura
, and
S.
Matsui
,
J. Vac. Sci. Technol. B
14
,
4272
(
1996
).
18.
M.
Kaestner
and
I. W.
Rangelow
,
Microelectron. Eng.
97
,
96
(
2012
).
19.
L. L.
Cheong
,
P.
Paul
,
F.
Holzner
,
M.
Despont
,
D. J.
Coady
,
J. L.
Hedrick
,
R.
Allen
,
A. W.
Knoll
, and
U.
Duerig
,
Nano Lett.
13
,
4485
(
2013
).
20.
A.
Saeki
,
T.
Kozawa
,
S.
Tagawa
,
H. B.
Cao
,
H.
Deng
, and
M. J.
Leeson
,
J. Micro/Nanolithogr. MEMS MOEMS
6
,
043004
(
2007
).
21.
J. T.
Woodward
 et al,
Proc. SPIE
6923
,
69232B
(
2008
).
22.
M.
Ishida
,
K.
Kobayashi
,
J. I.
Fujita
,
Y.
Ochiai
,
H.
Yamamoto
, and
S.
Tono
,
Jpn. J. Appl. Phys. Part 1
41
,
4228
(
2002
).
23.
I. W.
Rangelow
 et al,
Proc. SPIE
10456
,
1045621
(
2018
).
24.
C. A.
Mack
,
Field Guide to Optical Lithography
(
SPIE
,
Bellingham
,
2006
).
25.
T.
Sandstrom
and
C.
Rydberg
,
Proc. SPIE
6520
,
65200X
(
2007
).
26.
C.
Nelson
,
S. C.
Palmateer
,
A. R.
Forte
, and
T. M.
Lyszczarz
,
J. Vac. Sci. Technol. B
17
,
2488
(
1999
).
27.
N. G.
Orji
,
T. V.
Vorburger
,
J.
Fu
,
R. G.
Dixson
,
C. V.
Nguyen
, and
J.
Raja
,
Meas. Sci. Technol.
16
,
2147
(
2005
).
28.
N. G.
Orji
,
M. I.
Sanchez
,
J.
Raja
, and
T. V.
Vorburger
,
Nanoscience and Technolology
(
Springer
,
Berlin
,
2014
), pp.
277
301
.
29.
M.
Fouchier
,
E.
Pargon
, and
B.
Bardet
,
J. Appl. Phys.
113
,
104903
(
2013
).
30.
N. G.
Orji
 et al,
Nat. Electron.
1
,
532
(
2018
).
31.
G. P.
Patsis
,
V.
Constantoudis
,
A.
Tserepi
, and
E.
Gogolides
,
J. Vac. Sci. Technol. B
21
,
1008
(
2003
).
32.
V.
Constantoudis
,
G. P.
Patsis
,
L. H. A.
Leunissen
, and
E.
Gogolides
,
J. Vac. Sci. Technol. B
22
,
1974
(
2004
).
33.
V.
Constantoudis
,
G. P.
Patsis
,
A.
Tserepi
, and
E.
Gogolides
,
J. Vac. Sci. Technol. B
21
,
1019
(
2003
).
34.
M.
Kaestner
 et al,
Proc. SPIE
9423
,
94230E
(
2015
).
35.
M.
Kaestner
and
I. W.
Rangelow
,
J. Vac. Sci. Technol. B
29
,
06FD02
(
2011
).
36.
Z.
Durrani
,
M.
Jones
,
M.
Kaestner
,
M.
Hofer
,
E.
Guliyev
,
A.
Ahmad
,
T.
Ivanov
,
J.-P.
Zoellner
, and
I. W.
Rangelow
,
Proc. SPIE
8680
,
868017
(
2013
).
37.
M.
Kaestner
 et al,
Proc. SPIE
9049
,
90490C
(
2014
).
38.
Y.
Krivoshapkina
,
M.
Kaestner
,
C.
Lenk
,
S.
Lenk
, and
I. W.
Rangelow
,
Microelectron. Eng.
177
,
78
(
2017
).
39.
I. W.
Rangelow
 et al,
J. Vac. Sci. Technol. B
35
,
06G101
(
2017
).
40.
L. E.
Ocola
,
D. S.
Fryer
,
G.
Reynolds
,
A.
Krasnoperova
, and
F.
Cerrina
,
Appl. Phys. Lett.
68
,
717
(
1995
).
41.
D. L.
Olynick
,
J. A.
Liddle
,
A. V.
Tivanski
,
M. K.
Gilles
,
T.
Tyliszczak
,
F.
Salmassi
,
K.
Liang
, and
S. R.
Leone
,
J. Vac. Sci. Technol. B
24
,
3048
(
2006
).
42.
C.
Lenk
 et al,
J. Vac. Sci. Technol. B
36
,
06JL03
(
2018
).
43.
C. A.
Mack
and
B. D.
Bunday
,
Proc. SPIE
10145
,
101451R
(
2017
).
44.
G. F.
Lorusso
 et al,
J. Micro/Nanolithogr. MEMS MOEMS
17
,
041009
(
2018
).
45.
H.-C.
Liu
,
G. A.
Dahlen
, and
J. R.
Osborne
,
Applied Scanning Probe Methods VIII
(
Springer
,
Berlin
,
2008
), pp.
31
75
.
You do not currently have access to this content.