The authors report the development of fast, nondestructive, and high accuracy metrology for the characterization of profile tilt relative to the surface normal in nanoscale gratings using x-ray diffraction. Gratings were illuminated with a collimated x-ray beam (Cu Kα), similar to variable-angle small-angle x-ray scattering, to record changes of diffraction efficiency (DE) as a function of incidence angle. Simulations using scalar diffraction theory and rigorous coupled wave analysis predict extrema (0th order DE minimized, ±1st order DE maximized) when local grating bars are parallel to the incident x-ray beam. The surface normal was measured independently by reflecting a laser beam from the grating surface. The independent measurements using x rays and laser beams were referenced to each other via a slit reference plane to characterize the bar tilt angle relative to the surface normal. The fast x-ray measurement can be repeated at arbitrary points to study the spatial variation of the bar tilt angle across large gratings. Two test gratings etched with different deep reactive-ion etch chambers were prepared to investigate the performance of the proposed method. The authors report a repeatability of <0.01° and an accuracy of ∼0.08° with a fast scan speed (total integration time of 108 s to scan a line across ∼55 mm large grating samples at an interval of ∼2 mm). High spatial resolution (<50 μm) can be easily achieved at the expense of speed by limiting the incident x-ray spot size. This process is applicable to any periodic nanostructure as long as x-ray diffraction is well modeled.

1.
M. M.
Shulaker
,
T. F.
Wu
,
M. M.
Sabry
,
H.
Wei
,
H.-S.
Philip Wong
, and
S.
Mitra
,
Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition
, Grenoble, France, 9–13 March 2015 (IEEE,
2015
) p.
1197
.
2.
H.
Miao
,
A. A.
Gomella
,
N.
Chedid
,
L.
Chen
, and
H.
Wen
,
Nano Lett.
14
,
3453
(
2014
).
3.
A. R.
Bruccoleri
,
R. K.
Heilmann
, and
M. L.
Schattenburg
,
J. Vac. Sci. Technol. B
34
,
06KD02
(
2016
).
4.
H.
Lee
 et al.,
Proc. SPIE
10959
,
1095907
(
2019
).
5.
R.
Barnett
,
D.
Thomas
,
Y.
Song
,
D.
Tossell
,
T.
Barrass
, and
O.
Ansell
,
2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)
,
Las Vegas, NV
,
1–4 June 2010
(
IEEE
,
New York
,
2010
), p.
1056
.
6.
S.
Murakawa
,
S.
Fang
, and
J. P.
McVittie
,
Appl. Phys. Lett.
64
,
1558
(
1994
).
7.
M. T.
Postek
,
A. E.
Vladar
, and
P.
Cizmar
,
Proc. SPIE
9173
,
917306
(
2014
).
8.
M. T.
Postek
and
A. E.
Vladár
,
Proc. SPIE
9556
,
95560Q
(
2015
).
9.
R. K.
Heilmann
,
J.
Kolodziejczak
,
A. R.
Bruccoleri
,
J. A.
Gaskin
, and
M. L.
Schattenburg
,
Appl. Opt.
58
,
1223
(
2019
).
10.
H. M.
Günther
and
R. K.
Heilmann
,
J. Astron. Telesc. Instrum. Syst.
5
,
021003
(
2019
).
11.
R. K.
Heilmann
 et al.,
Proc. SPIE
10699
,
106996D
(
2018
).
12.
R. K.
Heilmann
,
M.
Ahn
,
E. M.
Gullikson
, and
M. L.
Schattenburg
,
Opt. Express
16
,
8658
(
2008
).
13.
R. K.
Heilmann
,
M.
Ahn
,
A.
Bruccoleri
,
C.-H.
Chang
,
E. M.
Gullikson
,
P.
Mukherjee
, and
M. L.
Schattenburg
,
Appl. Opt.
50
,
1364
(
2011
).
14.
J.
Song
,
R. K.
Heilmann
,
A. R.
Bruccoleri
,
M. L.
Schatternburg
, and
E.
Hertz
,
Proc. SPIE
10399
,
1039915
(
2017
).
15.
J.
Song
,
R. K.
Heilmann
,
A. R.
Bruccoleri
,
E.
Hertz
, and
M. L.
Schattenburg
,
Proc. SPIE
10699
,
106990S
(
2018
).
16.
R. L.
Jones
 et al.,
Appl. Phys. Lett.
83
,
4059
(
2003
).
17.
Z.
Ma
and
D. G.
Seiler
,
Metrology and Diagnostic Techniques for Nanoelectronics
(
Pan Stanford
,
New York
,
2017
).
18.
N. G.
Orji
 et al.,
Nat. Electron.
1
,
532
(
2018
).
19.
R. K.
Heilmann
 et al.,
Proc. SPIE
10399
,
1039914
(
2017
).
20.
J. W.
Goodman
,
Introduction to Fourier Optics
(
W. H. Freeman
, New York,
2017
).
21.
K. F.
Fischbach
 et al.,
Proc. SPIE
0982
,
273
(
1988
).
22.
M. L.
Schattenburg
,
C. R.
Canizares
,
D.
Dewey
,
A. M.
Levine
,
T. H.
Markert
, and
H. I.
Smith
,
Proc. SPIE
298
,
210
(
1988
).
23.
J. S.
Lim
,
Two-Dimensional Signal and Image Processing
(
Prentice-Hall
,
Englewood Cliffs
,
NJ
,
1990
).
24.
M. G.
Moharam
and
T. K.
Gaylord
,
J. Opt. Soc. Am.
71
,
811
(
1981
).
25.
M.
Varvara
,
R.
Barnett
,
F.
Avril
, and
P.
Bennett
,
Transducers
(IEEE,
Anchorage
,
AK
,
2015
), p.
1172
.
26.
H. M.
Günther
,
C. T.
DeRoo
,
R. K.
Heilmann
,
E.
Hertz
,
R. K.
Smith
, and
J.
Wilms
,
Proc. SPIE
10699
,
106996F
(
2018
).
27.
R. K.
Heilmann
,
A. R.
Bruccoleri
, and
M. L.
Schattenburg
,
Proc. SPIE
9603
,
960314
(
2015
).
28.
R. K.
Heilmann
,
A. R.
Bruccoleri
,
J.
Kolodziejczak
,
J. A.
Gaskin
,
S. L.
O'Dell
,
R.
Bhatia
, and
M. L.
Schattenburg
,
Proc. SPIE
9905
,
99051X
(
2016
).
29.
T.
Hu
 et al.,
J. Appl. Phys.
96
,
1983
(
2004
).
30.
D. F.
Sunday
,
S.
List
,
J. S.
Chawla
, and
R. J.
Kline
,
J. Appl. Crystallogr.
48
,
1355
(
2015
).
You do not currently have access to this content.