The optical properties of a slightly boron doped float-zone crystalline silicon wafer are studied using ellipsometry and spectrophotometry in a wide spectral range from far IR to vacuum UV. One side of the wafer was cleaned in an argon plasma, which influenced the optical properties of silicon near the surface. The dielectric response of silicon was modeled using a simplified universal dispersion model which is constructed on the basis of parameterization of the joint density of states describing both the electronic and phonon excitations. Several variants of models describing phonon absorption and interband transitions are discussed. It was possible to accurately determine the optical constants of bulk silicon and the optical constants near the perturbed surface over a wide spectral range. These optical constants agree well with those found in other works. From the optical measurements, it was also possible to determine the thickness of the wafer and the static value of resistivity, and the determined values agreed with nominal values specified for the wafer.

1.
D. F.
Edwards
, “Silicon (Si),” in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, New York, 1985), Vol. 1, pp. 547–569.
2.
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
,
985
(
1983
).
3.
G. E.
Jellison
and
F. A.
Modine
,
Phys. Rev. B
27
,
7466
(
1983
).
4.
C. M.
Herzinger
,
B. D.
Johs
,
W. A.
McGahan
,
J. A.
Woollam
, and
W.
Paulson
,
J. Appl. Phys.
83
,
3323
(
1998
).
5.
J.
Šik
,
J.
Hora
, and
J.
Humlíček
,
J. Appl. Phys.
84
,
6291
(
1998
).
6.
B. J.
Frey
,
D. B.
Leviton
, and
T. J.
Madison
,
Proc. SPIE
6273
,
62732J
(
2006
).
7.
J.
Humlíček
and
J.
Šik
,
J. Appl. Phys.
118
,
195706
(
2015
).
8.
D.
Franta
,
A.
Dubroka
,
C.
Wang
,
A.
Giglia
,
J.
Vohánka
,
P.
Franta
, and
I.
Ohlídal
,
Appl. Surf. Sci.
421
,
405
(
2017
).
9.
D.
Franta
,
J.
Vohánka
,
M.
Čermák
,
P.
Franta
, and
I.
Ohlídal
,
J. Elect. Eng.
70
,
1
(
2019
).
10.
D.
Franta
et al., “Software for optical characterization newAD2,” see http://newad.physics.muni.cz.
11.
D.
Franta
,
J.
Vohánka
, and
M.
Čermák
, “Universal dispersion model for characterization of thin films over wide spectral range,” in Optical Characterization of Thin Solid Films, Springer Series in Surface Sciences, edited by O. Stenzel and M. Ohlídal (Springer, Cham, 2018), Vol. 64, pp. 31–82.
12.
D.
Franta
,
D.
Nečas
,
L.
Zajíčková
,
I.
Ohlídal
,
J.
Stuchlík
, and
D.
Chvostová
,
Thin Solid Films
539
,
233
(
2013
).
13.
D.
Franta
,
D.
Nečas
,
L.
Zajíčková
,
I.
Ohlídal
, and
J.
Stuchlík
,
Thin Solid Films
541
,
12
(
2013
).
14.
D.
Franta
,
D.
Nečas
, and
I.
Ohlídal
,
Appl. Opt.
54
,
9108
(
2015
).
15.
D.
Franta
,
D.
Nečas
,
I.
Ohlídal
, and
A.
Giglia
,
Proc. SPIE
,
9628
,
96281U
(
2015
).
16.
D.
Franta
,
D.
Nečas
,
A.
Giglia
,
P.
Franta
, and
I.
Ohlídal
,
Appl. Surf. Sci.
421
,
424
(
2017
).
17.
G. E.
Jellison
, Jr., “Data analysis for spectroscopic ellipsometry,” in Hanbook of Ellipsometry, edited by H. G. Tompkins and E. A. Irene (William Andrew, Norwich, 2005), pp. 237–296.
18.
I.
Ohlídal
,
J.
Vohánka
,
M.
Čermák
, and
D.
Franta
, “Ellipsometry of layered systems,” in Optical Characterization of Thin Solid Films, edited by O. Stenzel and M. Ohlídal (Springer, Cham, 2018), Vol. 64, pp. 233–267.
19.
D.
Franta
,
P.
Franta
,
J.
Vohánka
,
M.
Čermák
, and
I.
Ohlídal
,
J. Appl. Phys.
123
,
185707
(
2018
).
20.
D.
Franta
,
D.
Nečas
, and
L.
Zajíčková
,
Thin Solid Films
534
,
432
(
2013
).
21.
C. C.
Kim
,
J. W.
Garland
,
H.
Abad
, and
P. M.
Raccah
,
Phys. Rev. B
45
,
11749
(
1992
).
22.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors
(
Springer
,
Berlin
,
2001
).
23.
D.
Campi
and
C.
Coriasso
,
J. Appl. Phys.
64
,
4128
(
1988
).
24.
D.
Campi
and
C.
Coriasso
,
Mater. Lett.
7
,
134
(
1988
).
25.
G. E.
Jellison
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1996
).
26.
G. E.
Jellison
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
2137
(
1996
).
27.
A. S.
Ferlauto
,
G. M.
Ferreira
,
J. M.
Pearce
,
C. R.
Wronski
,
R. W.
Collins
,
X. M.
Deng
, and
G.
Ganguly
,
J. Appl. Phys.
92
,
2424
(
2002
).
28.
D.
Franta
,
M.
Čermák
,
J.
Vohánka
, and
I.
Ohlídal
,
Thin Solid Films
631
,
12
(
2017
).
29.
30.
B.
Velický
and
J.
Sak
,
Phys. Status Solidi
16
,
147
(
1966
).
31.
D.
Sell
and
P.
Lawaetz
,
Phys. Rev. Lett.
26
,
311
(
1971
).
32.
F.
Bassani
and
G.
Pastori Parravicini
, Electronic States and Optical Transitions in Solids, The Science of the Solid State Vol. 8 (Pergamon, Oxford, 1975).
33.
C.
Tanguy
,
Solid State Commun.
98
,
65
(
1996
).
34.
G. G.
Macfarlane
,
T. P.
McLean
,
J. E.
Quarrington
, and
V.
Roberts
,
Phys. Rev.
111
,
1245
(
1958
).
35.
G. G.
Macfarlane
and
V.
Roberts
,
Phys. Rev.
98
,
1865
(
1955
).
36.
D.
Franta
,
D.
Nečas
,
L.
Zajíčková
, and
I.
Ohlídal
,
Opt. Mater. Express
4
,
1641
(
2014
).
37.
D.
Franta
,
D.
Nečas
,
L.
Zajíčková
, and
I.
Ohlídal
,
Thin Solid Films
571
,
496
(
2014
).
38.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, 1964).
39.
M. E.
Thomas
,
S. K.
Andersson
,
R. M.
Sova
, and
R. I.
Joseph
,
Infrared Phys. Technol.
39
,
235
(
1998
).
40.
D.
De Sousa Meneses
,
M.
Malki
, and
P.
Echegut
,
J. Non-Cryst. Solids
352
,
769
(
2006
).
41.
J.
Humlíček
,
J. Quant. Spectrosc. Radiat. Transfer
27
,
437
(
1982
).
42.
R.
Brendel
and
D.
Bormann
,
J. Appl. Phys.
71
,
1
(
1992
).
43.
D.
De Sousa Meneses
,
G.
Gruener
,
M.
Malki
, and
P.
Echegut
,
J. Non-Cryst. Solids
351
,
124
(
2005
).
44.
S. M.
Abrarov
and
B. M.
Quine
,
Appl. Math. Comput.
218
,
1894
(
2011
).
45.
J.
Kischkat
et al.,
Appl. Opt.
71
,
6789
(
2012
).
You do not currently have access to this content.