Organic-inorganic hybrid perovskites have the generic formula ABX3, where X denotes a halide anion and A and B stand for an organic and a metal cation, respectively. These hybrid compounds are semiconductors with highly interesting and tunable properties. They are the subject of intense research for several applications, mainly in solar cells but also as light-emitting diodes and lasers. Tunability of the optical properties may be accomplished by site-substituted solid solutions in A, B, or X sites. In particular, some mixed-cation systems show increased stability for these applications. In this work, the authors report on the variation of the optical constants in mixed A-site cation methylammonium/formamidinium (MA/FA) lead iodide perovskites FAxMA1xPbI3 evaluated by spectroscopic ellipsometry in single crystal samples. The two main polymorphs of FAPbI3 are measured. The study is complemented by photoluminescence measurements to gain a better insight into observed spectroscopic features related to the electronic interband transitions of the crystals and their structural integrity. The main result is a continuous variation of the pseudocubic perovskite band structure of the solid solutions between the two end compounds MAPbI3 and α-FAPbI3.

2.
J. J.
Yoo
et al.,
Energy Environ. Sci.
12
,
2192
(
2019
).
3.
Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory (NREL), Golden, Colorado, 2019, see www.nrel.gov/pv/cell-efficiency.html.
4.
Z.-K.
Tan
et al.,
Nat. Nanotechnol.
9
,
687
(
2014
).
5.
S. D.
Stranks
and
H. J.
Snaith
,
Nat. Nanotechnol.
10
,
391
(
2015
).
6.
B. R.
Sutherland
and
E. H.
Sargent
,
Nat. Photon.
10
,
295
(
2016
).
7.
F. P.
Garcia de Arquer
,
A.
Armin
,
P.
Meredith
, and
E. H.
Sargent
,
Nat. Rev. Mater.
2
,
16100
(
2017
).
8.
H.
Fujiwara
,
N. J.
Podraza
,
M. I.
Alonso
,
M.
Kato
,
K.
Ghimire
,
T.
Miyadera
, and
M.
Chikamatsu
, “Organic-inorganic hybrid perovskite solar cells,” in Spectroscopic Ellipsometry for Photovoltaics. Volume 1: Fundamental Principles and Solar Cell Characterization, edited by H. Fujiwara and R. W. Collins (Springer, Cham, 2018), pp. 463–507.
9.
A. M. A.
Leguy
et al.,
Chem. Mater.
27
,
3397
(
2015
).
10.
B.
Charles
,
J.
Dillon
,
O. J.
Weber
,
M. S.
Islam
, and
M. T.
Weller
,
J. Mater. Chem. A
5
,
22495
(
2017
).
11.
A.
Francisco-López
,
B.
Charles
,
O. J.
Weber
,
M. I.
Alonso
,
M.
Garriga
,
M.
Campoy-Quiles
,
M. T.
Weller
, and
A. R.
Goñi
,
J. Phys. Chem. C
122
,
22073
(
2018
).
12.
O. J.
Weber
,
B.
Charles
, and
M. T.
Weller
,
J. Mater. Chem. A
4
,
15375
(
2016
).
13.
A.
Francisco-López
,
B.
Charles
,
M. I.
Alonso
,
M.
Garriga
,
M. T.
Weller
, and
A. R.
Goñi
, “Complete phase diagram of methylammonium/formamidinium lead iodide perovskite solid solutions from temperature dependent photoluminescence and Raman spectroscopy” (unpublished).
14.
A.
Binek
,
F. C.
Hanusch
,
P.
Docampo
, and
T.
Bein
,
J. Phys. Chem. Lett.
6
,
1249
(
2015
).
15.
Q.
Han
et al.,
Adv. Mater.
28
,
2253
(
2016
).
16.
P. F.
Ndione
,
Z.
Li
, and
K.
Zhu
,
J. Mater. Chem. C
4
,
7775
(
2016
).
17.
M.
Kato
,
T.
Fujiseki
,
T.
Miyadera
,
T.
Sugita
,
S.
Fujimoto
,
M.
Tamakoshi
,
M.
Chikamatsu
, and
H.
Fujiwara
,
J. Appl. Phys.
121
,
115501
(
2017
).
18.
B.
Subedi
,
L.
Guan
,
Y.
Yu
,
K.
Ghimire
,
P.
Uprety
,
Y.
Yan
, and
N. J.
Podraza
,
Sol. Energ. Mater. Sol. Cells
188
,
228
(
2018
).
19.
A. M. A.
Leguy
et al.,
Nanoscale
8
,
6317
(
2016
).
20.
M. I.
Saidaminov
et al.,
Nat. Commun.
6
,
7586
(
2015
).
21.
D. E.
Aspnes
, “The accurate determination of optical properties by ellipsometry,” in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, New York, 1985), Vol. 1, Chap. 5, pp. 89–112.
22.
M.
Garriga
,
M. I.
Alonso
, and
C.
Domínguez
,
Phys. Stat. Sol. B
215
,
247
(
1999
).
23.
M. I.
Alonso
and
M.
Garriga
, “Optical properties of semiconductors,” in Spectroscopic Ellipsometry for Photovoltaics: Volume 1: Fundamental Principles and Solar Cell Characterization, edited by H. Fujiwara and R. W. Collins (Springer, Cham, 2018), pp. 89–113.
24.
M. S.
Alias
,
I.
Dursun
,
M. I.
Saidaminov
,
E. M.
Diallo
,
P.
Mishra
,
T. K.
Ng
,
O. M.
Bakr
, and
B. S.
Ooi
,
Opt. Express
24
,
16586
(
2016
).
26.
M.
Shirayama
et al.,
Phys. Rev. Appl.
5
,
014012
(
2016
).
27.
J.
Leng
,
J.
Opsal
,
H.
Chu
,
M.
Senko
, and
D. E.
Aspnes
,
Thin Solid Films
313–314
,
132
(
1998
).
28.
G. E.
Jellison
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1996
).
29.
P.
Lautenschlager
,
M.
Garriga
,
S.
Logothetidis
, and
M.
Cardona
,
Phys. Rev. B
35
,
9174
(
1987
).
30.
A.
Francisco-López
,
B.
Charles
,
O. J.
Weber
,
M. I.
Alonso
,
M.
Garriga
,
M.
Campoy-Quiles
,
M. T.
Weller
, and
A. R.
Goñi
,
J. Phys. Chem. Lett.
10
,
2971
(
2019
).
31.
M.
Pazoki
,
M.
Wolf
,
T.
Edvinsson
, and
J.
Kullgren
,
Nano Energy
38
,
537
(
2017
).
32.
A.
Oranskaia
,
J.
Yin
,
O. M.
Bakr
,
J.-L.
Brédas
, and
O. F.
Mohammed
,
J. Phys. Chem. Lett.
9
,
5474
(
2018
).
33.
D.
Meggiolaro
and
F.
De Angelis
,
ACS Energy Lett.
3
,
2206
(
2018
).
34.
See supplementary material at http://dx.doi.org/10.1116/1.5121604 for details on surface roughness including an evaluation by AFM, the ellipsometric data and regression analysis results for all measured compositions, and different dielectric function parameterizations for the end compositions.

Supplementary Material

You do not currently have access to this content.