Among various grating structure fabrication techniques, potassium hydroxide (KOH) wet anisotropic etching of Si(110) wafers offers low cost and impressive aspect ratio over large areas with high etch uniformity. The aspect ratio is ultimately limited by lateral etching that constantly widens the trenches. In this paper, the authors demonstrated a method to double the achievable aspect ratio using two-step KOH etching. After first KOH etching, the grating structure was grown with a thermal oxide; and after removing the oxide from the trench bottom using reactive ion etching, a second KOH etching was carried out with the original trench sidewall protected by the thermal oxide. The authors achieved the highest anisotropy [etching rate ratio of (110) and (111)] of 247 with 50 wt. % KOH at room temperature. Using the two-step KOH etching, it is possible to increase the aspect ratio by more than a factor of 2 while keeping the trench width almost unchanged.

1.
D. W.
Keith
,
M. L.
Schattenburg
,
H. I.
Smith
, and
D. E.
Pritchard
,
Phys. Rev. Lett.
61
,
1580
(
1988
).
2.
J. T. M.
van Beek
,
R. C.
Fleming
,
P. S.
Hindle
,
J. D.
Prentiss
,
M. L.
Schattenburg
, and
S.
Ritzau
,
J. Vac. Sci. Technol. B
16
,
3911
(
1998
).
3.
C.
David
,
J.
Bruder
,
T.
Rohbeck
,
C.
Grünzweig
,
C.
Kottler
,
A.
Diaz
,
O.
Bunk
, and
F.
Pfeiffer
,
Microelectron. Eng.
84
,
1172
(
2007
).
4.
D.
Sarenac
 et al,
Phys. Rev. Lett.
120
,
113201
(
2018
).
5.
L.
Romano
,
J.
Vila-Comamala
,
K.
Jefimovs
, and
M.
Stampanoni
,
Microelectron. Eng.
177
,
59
(
2017
).
6.
L.
Romano
,
M.
Kagias
,
K.
Jefimovs
, and
M.
Stampanoni
,
RSC Adv.
6
,
16025
(
2016
).
7.
M.
Kagias
,
Z.
Wang
,
V. A.
Guzenko
,
C.
David
,
M.
Stampanoni
, and
K.
Jefimovs
,
Mater. Sci. Semicond. Process.
92
,
73
(
2019
).
8.
K.
Jefimovs
,
L.
Romano
,
J.
Vila-Comamala
,
M.
Kagias
,
Z.
Wang
,
L.
Wang
,
C.
Dais
,
H.
Solak
, and
M.
Stampanoni
,
Proc. SPIE
10146
,
101460L
(
2017
).
9.
J.
Vila-Comamala
,
L.
Romano
,
V.
Guzenko
,
M.
Kagias
,
M.
Stampanoni
, and
K.
Jefimovs
,
Microelectron. Eng.
192
,
19
(
2018
).
10.
P. S.
Finnegan
,
A. E.
Hollowell
,
C. L.
Arrington
, and
A. L.
Dagel
,
Mater. Sci. Semicond. Process
92
,
80
(
2019
).
11.
A. E.
Hollowell
,
C. L.
Arrington
,
P.
Finnegan
,
K.
Musick
,
P.
Resnick
,
S.
Volk
, and
A. L.
Dagel
,
Mater. Sci. Semicond. Process
92
,
86
(
2019
).
12.
H.
Seidel
,
L.
Csepregi
,
A.
Heuberger
, and
H.
Baumgärtel
,
J. Electrochem. Soc.
137
,
3626
(
1990
).
13.
D. L.
Kendall
,
Annu. Rev. Mater. Sci.
9
,
373
(
1979
).
14.
A.
Hölke
and
H. T.
Henderson
,
J. Micromech. Microeng.
9
,
51
(
1999
).
15.
G.
Kaminsky
,
J. Vac. Sci. Technol. B
3
,
1015
(
1985
).
16.
C.-H.
Chang
 et al,
J. Vac. Sci. Technol. B
22
,
3260
(
2004
).
17.
P.
Krause
and
E.
Obermeier
,
J. Micromech. Microeng.
5
,
112
(
1995
).
18.
M.
Ahn
,
R. K.
Heilmann
, and
M. L.
Schattenburg
,
J. Vac. Sci. Technol. B
26
,
2179
(
2008
).
19.
M. M.
Ahn
,
R. K.
Heilmann
, and
M. L.
Schattenburg
,
J. Vac. Sci. Technol. B
25
,
2593
(
2007
).
20.
S.-H.
Kim
,
S.-H.
Lee
,
H.-T.
Lim
,
Y.-K.
Kim
, and
S.-K.
Lee
,
6th International Conference on Emerging Technologies and Factory Automation Proceedings
,
Los Angeles
,
CA
, 9–12 September 1997 (
IEEE
, New York,
1997
), pp.
248
252
.
21.
R. K.
Dey
,
J.
Shen
, and
B.
Cui
,
J. Vac. Sci. Technol. B
35
,
06GC01
(
2017
).
22.
C. J.
Mogab
,
A. C.
Adams
, and
D. L.
Flamm
,
J. Appl. Phys.
49
,
3796
(
1978
).
You do not currently have access to this content.