The authors have established a robust set of growth conditions for homoepitaxy of high-quality InAs with a (111)A crystallographic orientation by molecular beam epitaxy (MBE). By tuning the substrate temperature, the authors obtain a transition from a 2D island growth mode to step-flow growth. Optimized MBE parameters (substratetemperature=500°C, growthrate=0.12ML/s, and V/IIIratio40) lead to the growth of extremely smooth InAs(111)A films, free from hillocks and other 3D surface imperfections. The authors see a correlation between InAs surface smoothness and optical quality, as measured by photoluminescence spectroscopy. This work establishes InAs(111)A as a platform for future research into other materials from the 6.1 Å family of semiconductors grown with a (111) orientation.

1.
C. D.
Yerino
,
B.
Liang
,
D. L.
Huffaker
,
P. J.
Simmonds
, and
M. L.
Lee
,
J. Vac. Sci. Technol. B
35
,
010801
(
2017
).
2.
S. R.
Mehrotra
,
M.
Povolotskyi
,
D. C.
Elias
,
T.
Kubis
,
J. J.
Law
,
M. J.
Rodwell
, and
G.
Klimeck
,
IEEE Electron Device Lett.
34
,
1196
(
2013
).
3.
A.
Schliwa
,
M.
Winkelnkemper
,
A.
Lochmann
,
E.
Stock
, and
D.
Bimberg
,
Phys. Rev. B
80
,
161307(R)
(
2009
).
4.
C. D.
Yerino
et al.,
Appl. Phys. Lett.
105
,
251901
(
2014
).
5.
N. V.
Tarakina
,
S.
Schreyeck
,
T.
Borzenko
,
C.
Schumacher
,
G.
Karczewski
,
K.
Brunner
,
C.
Gould
,
H.
Buhmann
, and
L. W.
Molenkamp
,
Cryst. Growth Des.
12
,
1913
(
2012
).
6.
Z.
Zeng
et al.,
AIP Adv.
3
,
072112
(
2013
).
7.
K.
Ueno
,
T.
Shimada
,
K.
Saiki
, and
A.
Koma
,
Appl. Phys. Lett.
56
,
327
(
1990
).
8.
S.
Vishwanath
et al.,
J. Mater. Res.
31
,
900
(
2016
).
9.
Y.
Okano
,
M.
Shigeta
,
H.
Seto
,
H.
Katahama
,
S.
Nishine
, and
I.
Fujimoto
,
Jpn. J. Appl. Phys.
29
,
L1357
(
1990
).
10.
D.
Woolf
,
D.
Westwood
, and
R.
Williams
,
Semicond. Sci. Technol.
8
,
1075
(
1993
).
11.
M. R.
Fahy
,
K.
Sato
, and
B. A.
Joyce
,
Appl. Phys. Lett.
64
,
190
(
1994
).
12.
K.
Sato
,
M. R.
Fahy
, and
B. A.
Joyce
,
Jpn. J. Appl. Phys.
33
,
L905
(
1994
).
13.
P.
Chen
,
K. C.
Rajkumar
, and
A.
Madhukar
,
Appl. Phys. Lett.
58
,
1771
(
1991
).
14.
C.
Guerret-Piecourt
and
C.
Fontaine
,
J. Vac. Sci. Technol. B
16
,
204
(
1998
).
15.
P. J.
Simmonds
and
M. L.
Lee
,
Appl. Phys. Lett.
99
,
10
(
2011
).
16.
P. J.
Simmonds
and
M. L.
Lee
,
J. Appl. Phys.
112
,
054313
(
2012
).
17.
H. Q.
Hou
and
C. W.
Tu
,
Appl. Phys. Lett.
62
,
281
(
1993
).
18.
I.
Sadeghi
,
M. C.
Tam
, and
Z. R.
Wasilewski
,
J. Vac. Sci. Technol. B
37
,
031210
(
2019
).
19.
C. F.
Schuck
,
R. A.
McCown
,
A.
Hush
,
A.
Mello
,
S.
Roy
,
J. W.
Spinuzzi
,
B.
Liang
,
D. L.
Huffaker
, and
P. J.
Simmonds
,
J. Vac. Sci. Technol. B
36
,
031803
(
2018
).
20.
K.
Sugiyama
,
J. Cryst. Growth
75
,
435
(
1986
).
21.
J. A.
Dura
,
J. T.
Zborowski
, and
T. D.
Golding
,
Mater. Res. Soc. Symp. Proc.
263
,
35
(
1992
).
22.
J.
Yang
,
C.
Nacci
,
J.
Martínez-Blanco
,
K.
Kanisawa
, and
S.
Fölsch
,
J. Phys. Condens. Matter
24
,
354008
(
2012
).
23.
24.
A.
Taguchi
and
K.
Kanisawa
,
Appl. Surf. Sci.
252
,
5263
(
2006
).
26.
You do not currently have access to this content.