The authors have established a robust set of growth conditions for homoepitaxy of high-quality InAs with a (111)A crystallographic orientation by molecular beam epitaxy (MBE). By tuning the substrate temperature, the authors obtain a transition from a 2D island growth mode to step-flow growth. Optimized MBE parameters (, , and ) lead to the growth of extremely smooth InAs(111)A films, free from hillocks and other 3D surface imperfections. The authors see a correlation between InAs surface smoothness and optical quality, as measured by photoluminescence spectroscopy. This work establishes InAs(111)A as a platform for future research into other materials from the 6.1 Å family of semiconductors grown with a (111) orientation.
REFERENCES
1.
C. D.
Yerino
, B.
Liang
, D. L.
Huffaker
, P. J.
Simmonds
, and M. L.
Lee
, J. Vac. Sci. Technol. B
35
, 010801
(2017
). 2.
S. R.
Mehrotra
, M.
Povolotskyi
, D. C.
Elias
, T.
Kubis
, J. J.
Law
, M. J.
Rodwell
, and G.
Klimeck
, IEEE Electron Device Lett.
34
, 1196
(2013
). 3.
A.
Schliwa
, M.
Winkelnkemper
, A.
Lochmann
, E.
Stock
, and D.
Bimberg
, Phys. Rev. B
80
, 161307(R)
(2009
). 4.
C. D.
Yerino
et al., Appl. Phys. Lett.
105
, 251901
(2014
). 5.
N. V.
Tarakina
, S.
Schreyeck
, T.
Borzenko
, C.
Schumacher
, G.
Karczewski
, K.
Brunner
, C.
Gould
, H.
Buhmann
, and L. W.
Molenkamp
, Cryst. Growth Des.
12
, 1913
(2012
). 6.
Z.
Zeng
et al., AIP Adv.
3
, 072112
(2013
). 7.
K.
Ueno
, T.
Shimada
, K.
Saiki
, and A.
Koma
, Appl. Phys. Lett.
56
, 327
(1990
). 8.
S.
Vishwanath
et al., J. Mater. Res.
31
, 900
(2016
). 9.
Y.
Okano
, M.
Shigeta
, H.
Seto
, H.
Katahama
, S.
Nishine
, and I.
Fujimoto
, Jpn. J. Appl. Phys.
29
, L1357
(1990
). 10.
D.
Woolf
, D.
Westwood
, and R.
Williams
, Semicond. Sci. Technol.
8
, 1075
(1993
). 11.
M. R.
Fahy
, K.
Sato
, and B. A.
Joyce
, Appl. Phys. Lett.
64
, 190
(1994
). 12.
K.
Sato
, M. R.
Fahy
, and B. A.
Joyce
, Jpn. J. Appl. Phys.
33
, L905
(1994
). 13.
P.
Chen
, K. C.
Rajkumar
, and A.
Madhukar
, Appl. Phys. Lett.
58
, 1771
(1991
). 14.
C.
Guerret-Piecourt
and C.
Fontaine
, J. Vac. Sci. Technol. B
16
, 204
(1998
). 15.
P. J.
Simmonds
and M. L.
Lee
, Appl. Phys. Lett.
99
, 10
(2011
). 16.
P. J.
Simmonds
and M. L.
Lee
, J. Appl. Phys.
112
, 054313
(2012
). 17.
H. Q.
Hou
and C. W.
Tu
, Appl. Phys. Lett.
62
, 281
(1993
). 18.
I.
Sadeghi
, M. C.
Tam
, and Z. R.
Wasilewski
, J. Vac. Sci. Technol. B
37
, 031210
(2019
). 19.
C. F.
Schuck
, R. A.
McCown
, A.
Hush
, A.
Mello
, S.
Roy
, J. W.
Spinuzzi
, B.
Liang
, D. L.
Huffaker
, and P. J.
Simmonds
, J. Vac. Sci. Technol. B
36
, 031803
(2018
). 20.
K.
Sugiyama
, J. Cryst. Growth
75
, 435
(1986
). 21.
J. A.
Dura
, J. T.
Zborowski
, and T. D.
Golding
, Mater. Res. Soc. Symp. Proc.
263
, 35
(1992
). 22.
J.
Yang
, C.
Nacci
, J.
Martínez-Blanco
, K.
Kanisawa
, and S.
Fölsch
, J. Phys. Condens. Matter
24
, 354008
(2012
). 23.
K.
Kanisawa
, J. Cryst. Growth
378
, 8
(2013
). 24.
A.
Taguchi
and K.
Kanisawa
, Appl. Surf. Sci.
252
, 5263
(2006
). 25.
H.
Kroemer
, Physica E
20
, 196
(2004
). 26.
K.
Neyts
, Appl. Surf. Sci.
244
, 517
(2005
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.