Nanofabrication of x-ray diffractive optics using electron beam lithography requires a complex process of electron exposure optimization and resist development. Thermal scanning probe lithography (TSPL) offers a high resolution, maskless, gray scale patterning method with reduced complexity. Thin diffractive optics with high efficiency for the extreme ultraviolet (EUV) and soft x-ray (SXR) photon range could be fabricated by combining TSPL with a single etching step if the TSPL resist, polyphthalaldehyde (PPA), can be used as an etch mask to direct-etch the pattern into a substrate using reactive ion etching. This condition critically depends on high etch selectivity between the substrate and the PPA, because TSPL resolution deteriorates as the PPA patterning depth increases beyond tens of nanometers. In this work, the authors have evaluated the etch selectivity for PPA and Si3N4 using SF6/C4F8 gases and the influence of process parameters, including gas flow rate, vacuum pressure, radio frequency bias power, and inductively coupled plasma power. The experimental results indicate that an etch selectivity of 7 (Si3N4:PPA) is achievable, and the authors demonstrate that diffractive optics for EUV/SXR can be fabricated in only two steps.

1.
R.
Garcia
,
A. W.
Knoll
, and
E.
Riedo
,
Nat. Nanotechnol.
9
,
577
(
2014
).
2.
H.
Wolf
,
C.
Rawlings
,
P.
Mensch
,
J. L.
Hedrick
,
D. J.
Coady
,
U.
Duerig
, and
A. W.
Knoll
,
J. Vac. Sci. Technol. B
33
,
02B102
(
2015
).
3.
Y. K.
Ryu Cho
 et al,
ACS Nano
11
,
11890
(
2017
).
4.
P. C.
Paul
,
A. W.
Knoll
,
F.
Holzner
,
M.
Despont
, and
U.
Duerig
,
Nanotechnology
22
,
275306
(
2011
).
5.
S.
Gorelick
,
J.
Vila-Comamala
,
V. A.
Guzenko
,
R.
Barrett
,
M.
Salomé
, and
C.
David
,
J. Synchrotron Radiat.
18
,
442
(
2011
).
6.
T.
Chang
,
J. Vac. Sci. Technol.
12
,
1271
(
1975
).
7.
C.
Vieu
,
F.
Carcenac
,
A.
Pepin
,
Y.
Chen
,
M.
Mejias
,
A.
Lebib
,
L.
Manin-Ferlazzo
,
L.
Couraud
, and
H.
Launois
,
Appl. Surf. Sci.
164
,
111
(
2000
).
8.
M. A.
Mohammad
,
M.
Muhammad
,
S. K.
Dew
, and
M.
Stepanova
,
Nanofabrication: Techniques and Principles
, edited by
M.
Stepanova
and
S.
Dew
(
Springer
,
Vienna
,
2012
), pp.
11
41
.
9.
E.
Lisi
,
M.
Amabili
,
S.
Meloni
,
A.
Giacomello
, and
C. M.
Casciola
,
ACS Nano
12
,
359
(
2017
).
10.
L. L.
Cheong
,
P.
Paul
,
F.
Holzner
,
M.
Despont
,
D. J.
Coady
,
J. L.
Hedrick
,
R.
Allen
,
A. W.
Knoll
, and
U.
Duerig
,
Nano Lett.
13
,
4485
(
2013
).
11.
Y.
Lisunova
,
M.
Spieser
,
R.
Juttin
,
F.
Holzner
, and
J.
Brugger
,
Microelectron. Eng.
180
,
20
(
2017
).
12.
F.
Laermer
,
S.
Franssila
,
L.
Sainiemi
, and
K.
Kolari
,
Handbook of Silicon Based MEMS Materials and Technologies
, 2nd ed. (
Elsevier
,
New York
,
2015
), p.
444
.
13.
K.-S.
Chen
,
A. A.
Ayón
,
X.
Zhang
, and
S. M.
Spearing
,
J. Microelectromech. Syst.
11
,
264
(
2002
).
14.
B.
Zwickl
,
W.
Shanks
,
A.
Jayich
,
C.
Yang
,
A.
Bleszynski Jayich
,
J.
Thompson
, and
J.
Harris
,
Appl. Phys. Lett.
92
,
103125
(
2008
).
15.
J. H.
Scofield
,
X-Ray Data Booklet
(
University of California
,
Berkeley, CA
,
2001
).
16.
J.
Yota
,
J.
Hander
, and
A.
Saleh
,
J. Vac. Sci. Technol.
18
,
372
(
2000
).
17.
B.
Lee Sang
,
M.-J.
Gour
,
A.
Jaouad
,
S.
Ecoffey
,
M.
Darnon
,
B.
Sadani
,
A.
Souifi
, and
D.
Drouin
,
Microelectron. Eng.
141
,
68
(
2015
).
18.
M. D.
Koretsky
and
J. A.
Reimer
,
J. Appl. Phys.
72
,
5081
(
1992
).
19.
R. L.
Bates
,
Correction of Aspect Ratio Dependency in Deep Silicon Etch Using SF 6/C 4 F 8/Ar Gas Mixture
(
The University of Texas at Dallas
,
Richardson, TX
,
2014
).
20.
V.
Moreno
,
J. F.
Román
, and
J. R.
Salgueiro
,
Am. J. Phys.
65
,
556
(
1997
).
21.
S.
Leopold
,
C.
Kremin
,
A.
Ulbrich
,
S.
Krischok
, and
M.
Hoffmann
,
J. Vac. Sci. Technol. B
29
,
011002
(
2011
).
22.
T.
Mele
,
J.
Nulman
, and
J.
Krusius
,
J. Vac. Sci. Technol. B
2
,
684
(
1984
).
23.
R. A.
Gottscho
,
C. W.
Jurgensen
, and
D.
Vitkavage
,
J. Vac. Sci. Technol. B
10
,
2133
(
1992
).
You do not currently have access to this content.