Vertical geometry β-Ga2O3 Schottky rectifiers of various sizes were deliberately stressed at a high forward current density level until a sudden decrease of reverse bias breakdown voltage was observed. The diodes were fabricated on an Sn-doped (n = 3.6 × 1018 cm−3) (001) β-Ga2O3 single crystal substrate with a 10 μm epilayer grown by halide vapor phase epitaxy with a carrier concentration of 3.5 × 1016 cm−3. The forward bias stressing caused reverse breakdown degradation and thermally induced failure on both the Ni/Au Schottky contact and the epitaxial layer due to the low thermal conductivity of Ga2O3. The resulting temperature distributions at forward bias under different current conditions were simulated using 3D finite element analysis. The temperature profile at the surface during the rectifier turn-on period shows a strong dependence with crystalline orientation, evidenced by infrared camera measurements. The maximum junction temperature rise occurs at the center of the metal contact and is in the range of 270–350 °C.

1.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
2.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Semicond. Sci. Technol.
31
,
034001
(
2016
).
3.
H.
von Wenckstern
,
Adv. Electron. Mater.
3
,
1600350
(
2017
).
4.
S. I.
Stepanov
,
V. I.
Nikolaev
,
V. E.
Bougrov
, and
A. E.
Romanov
,
Rev. Adv. Mater. Sci.
44
,
63
(2016), available at http://www.ipme.ru/e-journals/RAMS/no_14416/06_14416_stepanov.pdf.
5.
Z.
Guo
 et al.,
Appl. Phys. Lett.
106
,
111909
(
2015
).
6.
M.
Slomski
,
N.
Blumenschein
,
P. P.
Paskov
,
J. F.
Muth
, and
T.
Paskova
,
J. Appl. Phys.
121
,
235104
(
2017
).
7.
M. D.
Santia
,
N.
Tandon
, and
J. D.
Albrecht
,
Appl. Phys. Lett.
107
,
041907
(
2015
).
8.
Z.
Galazka et al.
,
J. Cryst. Growth
404
,
184
(
2014
).
9.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
110
,
103506
(
2017
).
10.
K.
Sasaki
,
D.
Wakimoto
,
Q. T.
Thieu
,
Y.
Koishikawa
,
A.
Kuramata
,
M.
Higashiwaki
, and
S.
Yamakoshi
,
IEEE Electron Device Lett.
38
,
783
(
2017
).
11.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
ECS J. Solid State Sci. Technol.
7
,
Q92
(
2018
).
12.
Z.
Hu
 et al.,
IEEE Electron Device Lett.
39
,
1564
(
2018
).
13.
J.
Yang
,
F.
Ren
,
Y. T.
Chen
,
Y. T.
Liao
,
C. W.
Chang
,
J.
Lin
,
M. J.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
IEEE J. Electron Devices Soc.
7
,
57
(
2019
).
14.
Z.
Hu
,
H.
Zhou
,
K.
Dang
,
Y. Z.
Cai Feng
,
Y.
Gao
,
Q.
Feng
,
J.
Zhang
, and
Y.
Hao
,
IEEE J. Electron Devices Soc.
6
,
815
(
2018
).
15.
C.
Joishi
,
S.
Rafique
,
Z.
Xia
,
L.
Han
,
S.
Krishnamoorthy
,
Y.
Zhang
,
S.
Lodha
,
H.
Zhao
, and
S.
Rajan
,
Appl. Phys. Express
11
,
031101
(
2018
).
16.
W.
Li
 et al., IEDM Technical Digest, IEDM Technical Digest (
IEEE
,
New York
,
2018
), pp.
8.5.1
8.5.4
.
17.
J. W.
Pomeroy
 et al.,
IEEE Electron Dev. Lett.
40
,
189
(
2019
).
18.
B.
Chatterjee
,
A.
Jayawardena
,
E.
Heller
,
D. W.
Snyder
,
S.
Dhar
, and
S.
Choi
,
Rev. Sci. Instrum.
89
,
114903
(
2018
).
19.
H.
Zhou
,
K.
Maize
,
G.
Qiu
,
A.
Shakouri
, and
P. D.
Ye
,
Appl. Phys. Lett.
111
,
092102
(
2017
).
20.
Z.
Cheng
,
L.
Yates
,
J.
Shi
,
M. J.
Tadjer
,
K. D.
Hobart
, and
S.
Graham
,
APL Mater.
7
,
031118
(
2019
).
21.
C.-H.
Lin
,
N.
Hatta
,
K.
Konishi
,
S.
Watanabe
,
A.
Kuramata
,
K.
Yagi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
114
,
032103
(
2019
).
22.
Q.
He
 et al.,
IEEE Electron Device Lett.
39
,
556
(
2018
).
23.
M. H.
Wong
,
Y.
Morikawa
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
109
,
193503
(
2016
).
24.
Noah
Allen
,
Ming
Xiao
,
Xiaodong
Yan
,
Kohei
Sasaki
,
Marko J.
Tadjer
,
Jiahui
Ma
,
Ruizhe
Zhang
,
Han
Wang
, and
Yuhao
Zhang
,
IEEE Electron Device Lett.
40
,
1399
(
2019
).
25.
J.
Noh
 et al.,
IEEE J. Electron Devices Soc.
7
,
914
(
2019
).
26.
J.
Yang
 et al.,
Appl. Phys. Lett.
114
,
232106
(
2019
).
27.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
AIP Adv.
8
,
055026
(
2018
).
28.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
,
S.
Jang
, and
A.
Kuramata
,
IEEE Electron Device Lett.
38
,
906
(
2017
).
29.
J.
Yang
 et al.,
ECS J. Solid State Sci. Technol.
8
,
Q3028
(
2019
).
30.
R.
Sharma
,
E.
Patrick
,
M. E.
Law
,
J.
Yang
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
Q3195
(
2019
).
31.
T. J.
Anderson
 et al.,
ECS J. Solid State Sci. Technol.
6
,
Q3036
(
2017
).
32.
J.
Yang
,
C.
Fares
,
F.
Ren
,
R.
Sharma
,
E.
Patrick
,
M. E.
Law
,
S. J.
Pearton
, and
A.
Kuramata
,
J. Appl. Phys.
123
,
165706
(
2018
).
33.
Y.
Yao
,
R.
Gangireddy
,
J.
Kim
,
K. K.
Das
,
R. F.
Davis
, and
L. M.
Porter
,
J. Vac. Sci. Technol. B
35
,
03D113
(
2017
).
34.
W. S.
Hwang
 et al.,
Appl. Phys. Lett.
104
,
203111
(
2014
).
35.
M.
Ahn
,
A.
Sarracino
,
A.
Ansari
,
B.
Torralva
,
S.
Yalisove
, and
J.
Phillips
,
J. Appl. Phys.
125
,
223104
(
2019
).
36.
F.
Orlandi
,
F.
Mezzadri
,
G.
Calestani
,
F.
Boschi
, and
R.
Fornari
,
Appl. Phys. Express
8
,
111101
(
2015
).
37.
J.
Yang
,
F.
Ren
,
S. J.
Pearton
, and
A.
Kuramata
,
IEEE Trans. Electron Devices
65
,
2790
(
2018
).
38.
J.
Åhman
,
G.
Svensson
, and
J.
Albertsson
,
Acta Crystallogr. Sect. C
C52
,
1336
(
1996
).
39.
S. K.
Barman
and
M. N.
Huda
,
Phys. Status Solidi
13
,
1800554
(
2019
).
40.
J.
Yang
,
Z.
Sparks
,
F.
Ren
,
S. J.
Pearton
, and
M.
Tadjer
,
J. Vac. Sci. Technol. B
36
,
061201
(
2018
).
You do not currently have access to this content.