Sputter deposition is one of the most important techniques for the fabrication of memristive devices. It allows us to adjust the concentration of defects within the fabricated metal-oxide thin film layers. The defect concentration is important for those memristive devices whose resistance changes during device operation due to the drift of ions within the active layer while an electric field is applied. Reversible change of the resistance is an important property for devices used in neuromorphic circuits to emulate synaptic behavior. These novel bioinspired hardware architectures are ascertained in terms of advantageous features such as lower power dissipation and improved cognitive capabilities compared to state-of-the-art digital electronics. Thus, memristive devices are intensively studied with regard to neuromorphic analog systems. Double-barrier memristive devices with the layer sequence Nb/Al/Al2O3/NbOx/Au are promising candidates to emulate analog synaptic behavior in hardware. Here, the niobium oxide acts as the active layer, in which charged defects can drift due to an applied electric field causing analog resistive switching. In this publication, crucial parameters of the process plasma for thin film deposition, such as floating potential, electron temperature, and the energy flux to the substrate, are correlated with the I-V characteristics of the individual memristive devices. The results from plasma diagnostics are combined with microscopic and simulation methods. Strong differences in the oxidation state of the niobium oxide layers were found by transmission electron microscopy. Furthermore, kinetic Monte Carlo simulations indicate the impact of the defect concentration within the NbOx layer on the I-V hysteresis. The findings may enable a new pathway for the development of plasma-engineered memristive devices tailored for specific application.

1.
B.
Hoefflinger
,
CHIPS 2020
, edited by
B.
Höfflinger
(
Springer International Publishing
,
Cham
,
2016
), Vol.
2
, pp.
189
200
.
2.
G. E.
Moore
,
Cramming More Components onto Integrated Circuits
(
McGraw-Hill
,
New York
,
1965
).
3.
M.
Inubushi
and
K.
Yoshimura
,
Sci. Rep.
7
,
10199
(
2017
).
4.
L.
Appeltant
,
M. C.
Soriano
,
G.
Van der Sande
,
J.
Danckaert
,
S.
Massar
,
J.
Dambre
,
B.
Schrauwen
,
C. R.
Mirasso
, and
I.
Fischer
,
Nat. Commun.
2
,
468
(
2011
).
5.
H.
Zenil
,
Complex Syst.
19
,
1
(
2010
).
6.
U.
Rueckert
,
CHIPS 2020
, edited by
B.
Höfflinger
(
Springer International Publishing
,
Cham
,
2016
), Vol.
2
, pp.
249
274
.
7.
N. D.
Mermin
,
Quantum Computer Science: An Introduction
(
Cambridge University Press
,
Cambridge
,
2007
).
8.
A.
Alaghi
and
J. P.
Hayes
,
ACM Trans. Embed. Comput. Syst.
12
,
1
(
2013
).
9.
D. S.
Jeong
,
R.
Thomas
,
R. S.
Katiyar
,
J. F.
Scott
,
H.
Kohlstedt
,
A.
Petraru
, and
C. S.
Hwang
,
Rep. Prog. Phys.
75
,
076502
(
2012
).
10.
D. S.
Jeong
and
C. S.
Hwang
,
Adv. Mater.
30
,
1704729
(
2018
).
11.
D.
Ielmini
and
R.
Waser
,
Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2016
).
12.
S.-C.
Liu
,
Event-Based Neuromorphic Systems
(
John Wiley & Sons, Ltd
,
Chichester
,
2015
).
13.
M.
Ziegler
,
Ch.
Wenger
,
E.
Chicca
, and
H.
Kohlstedt
,
J. Appl. Phys.
124
,
152003
(
2018
).
14.
R.
Tetzlaff
,
Memristors and Memristive Systems
(
Springer
,
New York
,
2014
).
15.
R.
Kozma
,
R. E.
Pino
, and
G. E.
Paziena
,
Advances in Neuromorphic Memristor Science and Applications
(
Springer
,
New York
,
2012
).
16.
Y.
Li
,
Z.
Wang
,
R.
Midya
,
Q.
Xia
, and
J. J.
Yang
,
J. Phys. Appl. Phys.
51
,
503002
(
2018
).
17.
A.
Adamatzky
and
L.
Chua
,
Memristor Networks
(
Springer
,
London
,
2014
).
18.
F. Z.
Wang
,
L.
Li
,
L.
Shi
,
H.
Wu
, and
L. O.
Chua
,
J. Appl. Phys.
125
,
054504
(
2019
).
19.
20.
P.
Meuffels
and
R.
Soni
(
2012
), e-print arXiv: 1207-7319.
21.
X.
Hong
,
D. J.
Loy
,
P. A.
Dananjaya
,
F.
Tan
,
C.
Ng
, and
W.
Lew
,
J. Mater. Sci.
53
,
8720
(
2018
).
22.
J. J.
Yang
,
N. P.
Kobayashi
,
J. P.
Strachan
,
M.-X.
Zhang
,
D. A. A.
Ohlberg
,
M. D.
Pickett
,
Z.
Li
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Chem. Mater.
23
,
123
(
2011
).
23.
H.
Zhang
,
N.
Aslam
,
M.
Reiners
,
R.
Waser
, and
S.
Hoffmann-Eifert
,
Chem. Vap. Depos.
20
,
282
(
2014
).
24.
S.
Porro
,
A.
Jasmin
,
K.
Bejtka
,
D.
Conti
,
D.
Perrone
,
S.
Guastella
,
C. F.
Pirri
,
A.
Chiolerio
, and
C.
Ricciardi
,
J. Vac. Sci. Technol. A
34
,
01A147
(
2015
).
25.
C.
Giovinazzo
,
C.
Ricciardi
,
C. F.
Pirri
,
A.
Chiolerio
, and
S.
Porro
,
Appl. Phys. A
124
,
686
(
2018
).
26.
A.
Kumar
,
M.
Das
,
V.
Garg
,
B. S.
Sengar
,
M. T.
Htay
,
S.
Kumar
,
A.
Kranti
, and
S.
Mukherjee
,
Appl. Phys. Lett.
110
,
253509
(
2017
).
27.
M.
Das
,
A.
Kumar
,
R.
Singh
,
M. T.
Htay
, and
S.
Mukherjee
,
Nanotechnology
29
,
055203
(
2018
).
28.
H.
Jiang
and
Q.
Xia
,
Appl. Phys. Lett.
104
,
153505
(
2014
).
29.
J.
Domaradzki
,
A.
Wiatrowski
,
T.
Kotwica
, and
M.
Mazur
,
Mater. Sci. Semicond. Process.
94
,
9
(
2019
).
30.
H.
Mähne
,
H.
Wylezich
,
F.
Hanzig
,
S.
Slesazeck
,
D.
Rafaja
, and
T.
Mikolajick
,
Semicond. Sci. Technol.
29
,
104002
(
2014
).
31.
M.
Hansen
,
F.
Zahari
,
H.
Kohlstedt
, and
M.
Ziegler
,
Sci. Rep.
8
,
8914
(
2018
).
32.
H.
Kersten
,
G. M. W.
Kroesen
, and
R.
Hippler
,
Thin Solid Films
332
,
282
(
1998
).
33.
H.
Kersten
,
H.
Deutsch
,
H.
Steffen
,
G. M. W.
Kroesen
, and
R.
Hippler
,
Vacuum
63
,
385
(
2001
).
34.
J. A.
Thornton
,
Thin Solid Films
54
,
23
(
1978
).
35.
S.
Gauter
,
F.
Haase
, and
H.
Kersten
,
Thin Solid Films
669
,
8
(
2019
).
36.
S.
Gauter
,
M.
Fröhlich
,
W.
Garkas
,
M.
Polak
, and
H.
Kersten
,
Plasma Sources Sci. Technol.
26
,
065013
(
2017
).
37.
F.
Haase
,
D.
Manova
,
D.
Hirsch
,
S.
Mändl
, and
H.
Kersten
,
Plasma Sources Sci. Technol.
27
,
044003
(
2018
).
38.
S.
Bornholdt
and
H.
Kersten
,
Eur. Phys. J. D
67
,
176
(
2013
).
39.
S.
Bornholdt
,
N.
Itagaki
,
K.
Kuwahara
,
H.
Wulff
,
M.
Shiratani
, and
H.
Kersten
,
Plasma Sources Sci. Technol.
22
,
025019
(
2013
).
40.
T.
Minami
,
T.
Miyata
,
T.
Yamamoto
, and
H.
Toda
,
J. Vac. Sci. Technol. A
18
,
1584
(
2000
).
41.
H. Y.
Lee
 et al.,
2008 IEEE International Electron Devices Meeting
, 15–17 December 2008 (IEEE, San Francisco, CA,
2008
).
42.
D.
Walczyk
,
Ch.
Walczyk
,
T.
Schroeder
,
T.
Bertaud
,
M.
Sowińska
,
M.
Lukosius
,
M.
Fraschke
,
B.
Tillack
, and
Ch.
Wenger
,
Microelectron. Eng.
88
,
1133
(
2011
).
43.
L.
Zhao
,
S.
Clima
,
B.
Magyari-Köpe
,
M.
Jurczak
, and
Y.
Nishi
,
Appl. Phys. Lett.
107
,
013504
(
2015
).
44.
S. U.
Sharath
 et al.,
Appl. Phys. Lett.
104
,
063502
(
2014
).
45.
S. U.
Sharath
 et al.,
Adv. Funct. Mater.
27
,
1700432
(
2017
).
46.
M.
Hansen
,
M.
Ziegler
,
L.
Kolberg
,
R.
Soni
,
S.
Dirkmann
,
T.
Mussenbrock
, and
H.
Kohlstedt
,
Sci. Rep.
5
,
13753
(
2015
).
47.
M.
Hansen
,
M.
Ziegler
, and
H.
Kohlstedt
,
IEEE International Conference on Rebooting Computing (ICRC 2016)
, San Diego, CA, 17–19 October 2016 (IEEE, San Diego, CA,
2016
).
48.
H. M.
Mott-Smith
and
I.
Langmuir
,
Phys. Rev.
28
,
727
(
1926
).
49.
B. E.
Cherrington
,
Plasma Chem. Plasma Process.
2
,
113
(
1982
).
50.
R.
Piejak
,
V.
Godyak
,
B.
Alexandrovich
, and
N.
Tishchenko
,
Plasma Sources Sci. Technol.
7
,
590
(
1998
).
51.
A.
Piel
,
Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas
(
Springer
,
Berlin
,
2010
).
52.
S.
Dirkmann
,
M.
Hansen
,
M.
Ziegler
,
H.
Kohlstedt
, and
T.
Mussenbrock
,
Sci. Rep.
6
,
srep35686
(
2016
).
53.
J. G.
Simmons
,
J. Appl. Phys.
34
,
1793
(
1963
).
54.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
Hoboken
,
NJ
,
2007
).
55.
C.
Kügeler
,
M.
Meier
,
R.
Rosezin
,
S.
Gilles
, and
R.
Waser
,
Solid State Electron.
53
,
1287
(
2009
).
56.
G. W.
Burr
,
R. S.
Shenoy
,
K.
Virwani
,
P.
Narayanan
,
A.
Padilla
,
B.
Kurdi
, and
H.
Hwang
,
J. Vac. Sci. Technol. B
32
,
040802
(
2014
).
57.
K.
Ellmer
and
T.
Welzel
,
J. Mater. Res.
27
,
765
(
2012
).
58.
T.
Welzel
and
K.
Ellmer
,
Surf. Coat. Technol.
205
,
S294
(
2011
).
59.
M.
Popescu
,
Thin Solid Films
121
,
317
(
1984
).
60.
Y.
Mori
,
Rev. Sci. Instrum.
63
,
2357
(
1992
).
61.
J. W. J.
Wu
,
R.
Moriyama
,
M.
Nakano
,
K.
Ohshimo
, and
F.
Misaizu
,
Phys. Chem. Chem. Phys.
19
,
24903
(
2017
).
62.
T.
Welzel
and
K.
Ellmer
,
Vak. Forsch. Prax.
25
,
52
(
2013
).
63.
D.
Bach
, “EELS investigations of stoichiometric niobium oxides and niobium-based capacitors,” dissertation (
University of Karlsruhe
,
2009
).
64.
You do not currently have access to this content.