Patterning high-aspect-ratio gratings by the phase-locked two-beam fiber-optic interference lithography (2-FOIL) is numerically and experimentally investigated in this paper. The Dill model is applied in the numerical simulation to understand the effects of an exposure dose and pattern contrast on the exposed photoresist grating profiles. Exposure experiments on the authors’ home-built 2-FOIL setup are conducted to demonstrate the suitability for manipulating the linewidth of photoresist gratings by tuning the exposure dose to achieve high aspect ratios over 6 at high pattern contrast thanks to the phase-locking mechanism. The high-aspect-ratio photoresist gratings serve as an excellent etching mask for the subsequent pattern transfer into underlying silicon substrates for high-aspect-ratio silicon gratings. Using these high-aspect-ratio silicon gratings as the nanoimprint mold, a square nanomesh is demonstrated by means of the multiple-step nanoimprint lithography. The authors’ work demonstrates that the proposed phase-locked 2-FOIL system enables high pattern contrast under long exposure duration, making it a suitable tool for fabricating high-aspect-ratio grating structures.

1.
J.
Cai
 et al,
J. Mater. Chem. C
7
,
4363
(
2019
).
2.
J.
Cai
,
C.
Zhang
,
C.
Liang
,
S.
Min
,
X.
Cheng
, and
W. D.
Li
,
Adv. Opt. Mater.
7
,
1900516
(
2019
).
3.
L.
Chen
,
J.
Cai
,
J.
Li
,
S. P.
Feng
,
G.
Wei
, and
W. D.
Li
,
Org. Electron.
71
,
284
(
2019
).
4.
T.
Savas
,
M.
Schattenburg
,
J.
Carter
, and
H. I.
Smith
,
J. Vac. Sci. Technol. B
14
,
4167
(
1996
).
5.
P.
Mukherjee
,
A.
Bruccoleri
,
R. K.
Heilmann
,
M. L.
Schattenburg
,
A. F.
Kaplan
, and
L. J.
Guo
,
J. Vac. Sci. Technol. B
28
,
C6P70
(
2010
).
6.
Y.
Sun
,
D.
Mikolas
,
E.
Chang
,
P.
Lin
, and
C.
Fu
,
J. Vac. Sci. Technol. B
31
,
021604
(
2013
).
7.
H. H.
Solak
,
C.
David
,
J.
Gobrecht
,
V.
Golovkina
,
F.
Cerrina
, and
P. F.
Nealey
,
Microelectron. Eng.
67
,
56
(
2003
).
8.
V. N.
Golovkina
,
P. F.
Nealey
,
F.
Cerrina
,
J. W.
Taylor
,
H. H.
Solak
,
C.
David
, and
J.
Gobrecht
,
J. Vac. Sci. Technol. B
22
,
99
(
2004
).
9.
M.
Farhoud
,
J.
Ferrera
,
A. J.
Lochtefeld
,
T. E.
Murphy
,
M. L.
Schattenburg
,
J.
Carter
,
C. A.
Ross
, and
H. I.
Smith
,
J. Vac. Sci. Technol. B
17
,
3182
(
1999
).
10.
Y.
Hung
,
P.
Chang
,
Y.
Lin
, and
J.
Lin
,
J. Vac. Sci. Technol. B
34
,
040609
(
2016
).
11.
H. H.
Solak
,
C.
David
,
J.
Gobrecht
,
L.
Wang
, and
F.
Cerrina
,
J. Vac. Sci. Technol. B
20
,
2844
(
2002
).
12.
W. D.
Li
, U.S. patent 0,160,645 (
8 June 2017
).
13.
C. W.
Liang
,
T.
Qu
,
J. X.
Cai
,
Z. Y.
Zhu
,
S. J.
Li
, and
W. D.
Li
,
Opt. Express
26
,
8194
(
2018
).
14.
S. H.
Zaidi
and
S. R.
Brueck
,
Appl. Opt.
27
,
2999
(
1988
).
15.
F. H.
Dill
,
W. P.
Hornberger
,
P. S.
Hauge
, and
J. M.
Shaw
,
IEEE Trans. Electron Devices
22
,
445
(
1975
).
16.
S.
Babu
and
E.
Barouch
,
IEEE Electron. Device Lett.
7
,
252
(
1986
).
17.
B. A.
Mello
,
I. F.
da Costa
,
C. R.
Lima
, and
L.
Cescato
,
Appl. Opt.
34
,
597
(
1995
).
18.
J.
Cai
,
S.
Li
,
X.
Guo
,
H.
Ge
, and
W. D.
Li
,
J. Vac. Sci. Technol. B
34
,
06K408
(
2016
).
19.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
J. Vac. Sci. Technol. B
14
,
4129
(
1996
).
20.
You do not currently have access to this content.