The combination of refractive and diffractive components in a single optical element provides miniaturization of optical systems and enhancement of their performance. Thus, hybrid singlet lenses with diffractive structures added on top of the refractive curved surface were shown to have reduced chromatic and spherical aberration. Optical systems based on such hybrid lenses have reduced dimensions as they require fewer lenses for aberrations-correction. Diffractive elements provide additional possibilities of light manipulation and enable the realization of miniaturized multifocal systems, spectrometers, and other devices. Glass hybrid lenses are typically realized by diamond turning or glass moulding. These techniques, however, are not applicable for the fabrication of lenses in brittle materials or microlenses (hundreds of micrometers in diameter or less). On the other hand, direct writing techniques, such as focused ion beam (FIB) milling (typically Ga), offer a high resolution and flexibility of patterning on curved lens surfaces made of a great variety of materials. The disadvantages of FIB milling are its slow speed and Ga implantation that may alter or degrade the optical performance of fabricated components. FIB systems based on high brightness plasma ion sources provide more than an order of magnitude increase in milling rates with noble gas ions (e.g., Xe) compared with Ga FIBs. Here, the authors demonstrate the feasibility of rapid, direct milling of hybrid refractive-diffractive microlenses in glass using >60 nA of Xe ion current. Microlenses with up to 300-μm diameter were milled and diffraction gratings were realized on top of their curved surfaces. The performance of the lenses was characterized by mapping the transmitted intensity at different positions. Due to the introduction of diffraction gratings on the surface of the lenses, their optical performance is modified with the emergence of additional focal spots spatially separated by distances consistent with the theoretical and simulated values. The results indicate the applicability of the plasma focused ion beam systems for rapid fabrication of high-quality hybrid optical elements directly in hard substrates.

1.
T.
Stone
and
N.
George
,
Appl. Optics
27
,
2960
(
1988
).
2.
A. P.
Wood
,
Proc. SPIE
1354
,
316
(
1990
).
3.
A. P.
Wood
,
Appl. Optics
31
,
2253
(
1992
).
4.
N.
Davidson
,
A. A.
Friesem
, and
E.
Hasman
,
Appl. Optics
32
,
4770
(
1993
).
5.
L. P.
Zhao
,
Y. L.
Lam
,
Y.
Zhou
, and
Z. S.
Yun
,
Adv. Photonic Sens. Appl.
3897
,
624
(
1999
).
6.
S.
Vazquez-Montiel
,
O.
Garcıa-Lievanos
, and
L.
Castaneda-Escobar
,
Proc. SPIE
4419
, 700 (2001).
7.
A.
Flores
,
M. R.
Wang
, and
J. J.
Yang
,
Appl. Optics
43
,
5618
(
2004
).
8.
S.
Vazquez-Montiel
,
O.
Garcıa-Lievanos
, and
J. A.
Hernandez-Cruz
,
Adv. Opt. Technol.
2010
,
783206
(
2010
).
9.
A. P.
Wood
,
Proc. SPIE
1573
(
1992
).
10.
U.
Hinze
,
A.
El-Tamer
,
L. L.
Doskolovich
,
E. A.
Bezus
,
S.
Reiss
,
H.
Stolz
,
R. F.
Guthoff
,
O.
Stachs
, and
B.
Chichkov
,
Opt. Commun.
372
,
235
(
2016
).
11.
NGOPTICS Project, “Final Report Summary—NGOPTICS (Establishment of a value creation chain with European SMEs for the efficient production of diffractive structured glass optics—Next Generation Optics—),” 2011, see: https://cordis.europa.eu/project/rcn/101299/reporting/en.
12.
D. P.
Adams
and
M. J.
Vasile
,
J. Vac. Sci. Technol. B
24
,
836
(
2006
).
13.
M. T.
Langridge
,
D. C.
Cox
,
R. P.
Webb
, and
V.
Stolojan
,
Micron
57
,
56
(
2014
).
14.
Y. Q.
Fu
and
N. K. A.
Bryan
,
Appl. Phys. B
80
,
581
(
2005
).
15.
M.
Day
,
K.
Choonee
,
D.
Cox
,
M.
Thompson
,
G.
Marshall
, and
A. G.
Sinclair
,
Opt. Express
25
,
26987
(
2017
).
16.
N. S.
Smith
,
W. P.
Skoczylas
,
S. M.
Kellogg
,
D. E.
Kinion
,
P. P.
Tesch
,
O.
Sutherland
,
A.
Aanesland
, and
R. W.
Boswell
,
J. Vac. Sci. Technol. B
24
,
2902
(
2006
).
17.
L.
Kwakman
,
G.
Franz
,
M.
Margrete
,
V.
Taklo
,
A.
Klumpp
, and
P.
Ramm
,
AIP Conf. Proc.
1395
,
269
(
2011
).
18.
S.
Gorelick
and
A.
De Marco
,
Opt. Express
26
,
13647
(
2018
).
19.
S.
Gorelick
and
A.
de Marco
,
Opt. Express
26
,
32324
(
2018
).
20.
J.
Herzen
, HZG Report 2011-2.
21.
J. F.
Ziegler
,
J. Appl. Phys.
85
,
1249
(
1999
).
22.
P.
Latimer
and
R. F.
Crouse
,
Appl. Optics
31
,
80
(
1992
).
23.
J.
Vila-Comamala
,
S.
Gorelick
,
E.
Farm
,
C. M.
Kewish
,
A.
Diaz
,
R.
Barrett
,
V. A.
Guzenko
,
M.
Ritala
, and
C.
David
,
Opt. Express
19
,
175
(
2011
).
24.
J.
Vila-Comamala
,
M.
Wojcik
,
A.
Diaz
,
M.
Guizar-Sicairos
,
C. M.
Kewish
,
S.
Wang
, and
C.
David
,
J. Synchrotron Radiat.
20
,
397
(
2013
).
You do not currently have access to this content.