The quality and properties of epitaxial films are strongly determined by the reactor type and the precursor source phase. Such parameters can impose limitations in terms of background doping, interface sharpness, clustering, phase separation, and homogeneity. The authors have implemented a hybrid epitaxy technique that employs, simultaneously, vapor and solid sources as group III precursors. The system combines the high throughput and the versatility of gas sources as well as the high purity of solid sources. Using this technique, the authors successfully demonstrated epitaxial growth of Al0.48In0.52As and Ga0.47In0.53As layers on Fe-doped semi-insulating InP (001) substrates with interesting properties, compared with the epilayers grown by more standard techniques (chemical beam epitaxy, metal-organic chemical vapor deposition, and MBE). For AlInAs growth, trimethylindium and solid aluminum were used as In and Al precursors, respectively. In the case of GaInAs, triethylgallium and solid indium were used, respectively, as Ga and In precursors. Thermally cracked arsine (AsH3) was used as an As (group V) precursor for both alloys. The AlInAs and GaInAs epilayers grown at a temperature of 500 °C exhibited featureless surfaces with RMS roughness of 0.2 and 1 nm, respectively. Lattice mismatch is of 134 ppm, for AlInAs, and −96 ppm, for GaInAs, which were determined from high-resolution x-ray diffraction (HR-XRD) patterns and showed a large number of Pendellösung fringes, indicating a high crystalline quality. An FWHM of 18.5 arcs was obtained for GaInAs epilayers, while HR-XRD mapping of a full 2-in. wafer confirmed a viable lattice mismatch homogeneity (standard deviation of 0.026%) for as-grown layers. The authors observed room-temperature background doping values as low as 3 × 1015 cm−3, for AlInAs, and 1 × 1015 cm−3, for GaInAs. Analysis of the PL spectra at 20 K showed an FWHM of 8 meV, for AlInAs, and 9.7 meV, for GaInAs, demonstrating a very good optical quality of the epilayers. In addition, they have investigated the effects of the growth temperature and of the arsine pressure on epilayer properties. They also discuss the optimum conditions for the growth of high-quality Al0.48In0.52As and Ga0.47In0.53As layers on InP (001) substrates using this hybrid epitaxy technique.

1.
B. R.
Bennett
and
J. A.
Del Alamo
,
J. Appl. Phys.
73
,
3195
(
1993
).
2.
C.
Lenox
,
P.
Yuan
,
H.
Nie
,
O.
Baklenov
,
C.
Hansing
,
J. C.
Campbell
,
A. L.
Holmes
, and
B. G.
Streetman
,
Appl. Phys. Lett.
73
,
783
(
1998
).
3.
D. S. G.
Ong
,
J. S.
Ng
,
L. J. J.
Tan
,
C. H.
Tan
, and
J. P. R.
David
, 2007 International Conference on Indium Phosphide and Related Materials, Conference Proceedings, Matsue, Japan, 14–18, May 2007 (IEEE,
2007
), pp. 296–298.
4.
N. K.
Singh
,
J. S.
Foord
,
P. J.
Skevington
, and
G. J.
Davies
,
J. Cryst. Growth
120
,
33
(
1992
).
5.
W.
Lee
,
J. Vac. Sci. Technol. B
4
,
536
(
1986
).
6.
W. T.
Tsang
,
A. H.
Dayem
,
T. H.
Chiu
,
J. E.
Cunningham
,
E. F.
Schubert
,
J. A.
Ditzenberger
,
J.
Shah
,
J. L.
Zyskind
, and
N.
Tabatabaie
,
Appl. Phys. Lett.
49
,
170
(
1986
).
7.
C. W. D. C.
Reynolds
and
K. K.
Bajaj
,
Phys. Rev. B
29
,
7038(R)
(
1984
).
8.
F. Y.
Juang
,
Y.
Nashimoto
, and
P. K.
Bhattacharya
,
J. Appl. Phys.
58
,
1986
(
1985
).
9.
W.
Hong
,
A.
Chin
,
N.
Debbar
,
J.
Hinckley
,
P. K.
Bhattacharya
, and
J.
Singh
,
J. Vac. Sci. Technol. B
5
,
800
(1987).
10.
W. P.
Hong
,
P. K.
Bhattacharya
, and
J.
Singh
,
Appl. Phys. Lett.
50
,
618
(
1987
).
11.
A.
Sayari
,
N.
Yahyaoui
,
M.
Oueslati
,
H.
Maaref
, and
K.
Zellama
,
J. Raman Spectrosc.
40
,
1023
(
2009
).
12.
V. S.
Sundaram
,
L. M.
Fraas
, and
C. C.
Samuel
,
J. Elect. Mater.
20
,
2
(
1991
).
13.
R.
Bhat
,
M. A.
Koza
,
K.
Kash
,
S. J.
Allen
,
W. P.
Hong
,
S. A.
Schwarz
,
G. K.
Chang
, and
P.
Lin
,
J. Cryst. Growth
108
,
441
(
1991
).
14.
C. D.
Yerino
,
B.
Liang
,
D. L.
Huffaker
,
P. J.
Simmonds
, and
M. L.
Lee
,
J. Vac. Sci. Technol. B
35
,
010801
(
2017
).
15.
S. F.
Yoon
,
Y. B.
Miao
, and
K.
Radhakrishnan
,
Thin Solid Films
279
,
11
(
1996
).
16.
I.
Demir
and
S.
Elagoz
,
Superlattices Microstruct.
104
,
140
(
2017
).
17.
D. A.
Andrews
and
G. J.
Davies
,
J. Appl. Phys.
67
,
3187
(
1990
).
18.
S. J.
Bass
,
S. J.
Barnett
,
G. T.
Brown
,
N. G.
Chew
,
A. G.
Cullis
,
A. D.
Pitt
, and
M. S.
Skolnick
,
J. Cryst. Growth
79
,
378
(
1986
).
19.
J. L.
Benchimol
,
F.
Alexandre
,
Y.
Gao
, and
F.
Alaoui
,
J. Cryst. Growth
95
,
150
(
1989
).
20.
S. S. S. F.
Yoon
,
Y. B.
Miao
, and
K.
Radhakrishnan
,
Mater. Res.
2749
(
1996
).
21.
M.
Udhayasankar
,
J.
Kumar
, and
P.
Ramasamy
,
J. Cryst. Growth
268
,
389
(
2004
).
22.
M.
Uchida
and
G.
Araki
,
International Conference on Indium Phosphide and Related Materials, Conference Proceedings
, Princeton, NJ, 8–11 May 2006 (IEEE,
2006
), p. 396.
23.
A.
Chandra
,
C. E. C.
Wood
,
D. W.
Woodard
, and
L. F.
Eastman
,
Solid State Electron.
22
,
645
(
1979
).
24.
See: www.leguideits.fr (n.d.)
25.
E.
Tournié
,
Y. H.
Zhang
,
N. J.
Pulsford
, and
K.
Ploog
,
J. Appl. Phys.
70
,
7362
(
1991
).
26.
D. F.
Welch
,
G. W.
Wicks
,
L. F.
Eastman
,
P.
Parayanthal
, and
F. H.
Pollak
,
Appl. Phys. Lett.
46
,
169
(
1985
).
27.
S. F.
Yoon
,
Y. B.
Miao
,
K.
Radhakrishnan
, and
S.
Swaminathan
,
Mater. Sci. Eng. B Solid State Mater. Adv. Technol.
35
,
109
(
1995
).
28.
S. F.
Yoon
,
Superlattices Microstruct.
23
, 535 (
1998
).
29.
S. F.
Yoon
,
J. Cryst. Growth
178
,
207
(
1997
).
30.
W.-Y.
Choi
,
J. Vac. Sci. Technol. B
12
,
1013
(
1994
).
31.
L.
Aina
,
M.
Mattingly
,
A.
Fathimulla
,
E. A.
Martin
,
L.
Tom
, and
L.
Stecker
,
J. Cryst. Growth
93
,
911
(
1988
).
32.
J. E.
Ayers
,
Heteroepitaxy of Semiconductors Theory, Growth, and Characterization
(
Taylor & Francis
, London,
2007
).
33.
M. L. P.
Ribeiro
,
B.
Yavich
,
C. V. B.
Tribuzy
, and
P. L.
Souza
,
Braz. J. Phys.
32
,
362
(
2002
).
34.
G. J.
Davies
 et al.,
J. Vac. Sci. Technol. B
2
,
219
(
1984
).
35.
S. M.
Olsthoorn
,
F. A. J. M.
Driessen
,
A. P. A. M.
Eijkelenboom
, and
L. J.
Giling
,
J. Appl. Phys.
73
,
7798
(
1993
).
36.
J. F.
Carlin
,
A.
Rudra
, and
M.
Ilegems
,
J. Cryst. Growth
164
,
470
(
1996
).
37.
K. S. K.
Minami
,
J.
Jogo
,
Y.
Morishita
, and
T.
Ishibashi
,
Polym. Sci. Technol.
42
,
T1
(
2005
).
38.
F.
Genova
,
G.
Morello
,
G.
Autore
, and
L.
Gastaldi
,
J. Cryst. Growth
107
,
1065
(
1991
).
39.
M.
Udhayasankar
,
J.
Kumar
, and
P.
Ramasamy
,
J. Optoelectron. Adv. Mater.
5
,
75
(
2003
).
40.
B. C.
Johnson
,
IEEE J. Quant. Elect.
24
,
496
(
1988
).
41.
Y.
Wang
 et al.,
Nanoscale Res. Lett.
12
, 229 (
2017
).
42.
A. C. M.
Hjiri
,
A.
Ben Jazia
,
H.
Mejri
,
F.
Hassen
,
H.
Maaref
, and
F.
Peiro
,
Microelectron. Eng.
51–52
,
461
(
2000
).
43.
G. J.
Davies
,
W. T.
Tsang
, and
J. S.
Foord
,
Chemical Beam Epitaxy and Related Techniques
(
Wiley
, New York,
1997
).
44.
Y.
Iimura
,
K.
Nagata
,
Y.
Aoyagi
, and
S.
Namba
,
J. Cryst. Growth
105
,
230
(
1990
).
45.
See supplementary material at https://doi.org/10.1116/1.5088962 for S1: In-situ Reflection High-Energy Electron Diffraction (RHEED) of hybrid AlInAs epilayers. S2: Growth of AlInAs epilayers on InP (100) substrates by CBE using TriEthylAluminum (TEAl) precursor. S3: Leptos simulation of HR-XRD rocking curve for lattice matched AlInAs/InP grown by hybrid epitaxy. S4: Variation of In fraction in hybrid AlInAs epilayers as a function of growth parameter. S5: In-situ RHEED of GaInAs layers grown by CBE and hybrid epitaxy. S6: Surface morphology of GaInAs epilayers grown by CBE using TEGa and TMIn precursors. S7: Crystalline properties of GaInAs epilayers grown by CBE. S8: LTPL measurements of GaInAs epilayers grown by CBE technique. S9: Variation of In and Ga fractions in hybrid GaInAs epilayers as a function of Tg.

Supplementary Material

You do not currently have access to this content.