Next generation electronic devices like single electron transistors (SETs) operating at room temperature (RT) demand for high-resolution patterning techniques and simultaneously cost-effective, high-throughput manufacturing. Thereby, field-emission scanning probe lithography (FE-SPL) is a direct writing method providing high-resolution and high-quality nanopatterns. SET devices prepared by FE-SPL and plasma etching at cryogenic substrate temperature were shown to operate at RT [C. Lenk et al., Microelectron. Eng. 192, 77 (2018); Z. Durrani, M. Jones, F. Abualnaja, C. Wang, I. W. Rangelow, M. Kaestner, S. Lenk, C. Lenk, and A. Andreev, J. Appl. Phys. 124, 144502 (2018); I. W. Rangelow et al., J. Vac. Sci. Technol. B 34, 06K202 (2016)]. Nevertheless, FE-SPL lacks in writing speed and large area manufacturing capability required for industrial device manufacturing. This can be overcome by combining FE-SPL with nanoimprint lithography (NIL), which enables the replication of high-resolution features on large areas and provides high throughput. In this work, the authors will review a high-throughput process chain for RT-SET fabrication based on reproducing FE-SPL prepared masters by NIL and etching.

1.
K. K.
Likharev
,
Proc. IEEE
87
,
606
(
1999
).
2.
V.
Saripelli
,
V.
Narayanan
, and
S.
Datta
,
23rd International Conference on VLSI Design
,
Bangalore
,
3–7 January 2010
(
IEEE
,
New York
,
2010
), p.
399
.
3.
M. R.
Islam
,
D.
Jeong
, and
S. I.
Khondaker
,
Nanoscale
21
,
9786
(
2015
).
4.
N.
Kwon
,
K.
Kim
, and
I.
Chung
,
J. Nanosci. Nanotechnol.
14
,
2377
(
2014
).
5.
V.
Ray
,
R.
Subramanian
,
P.
Bhadrachalam
,
L.
Ma
,
C.
Kim
, and
S. J. I. N.
Koh
,
Nat. Nanotechnol.
14
,
603
(
2008
).
6.
C.
Lenk
 et al.,
Microelectron. Eng.
192
,
77
(
2018
).
7.
Z.
Durrani
,
M.
Jones
,
F.
Abualnaja
,
C.
Wang
,
I. W.
Rangelow
,
M.
Kaestner
,
S.
Lenk
,
C.
Lenk
, and
A.
Andreev
,
J. Appl. Phys.
124
,
144502
(
2018
).
8.
I. W.
Rangelow
 et al.,
J. Vac. Sci. Technol. B
34
,
06K202
(
2016
).
9.
Z. A. K.
Durrani
,
M. E.
Jones
,
C.
Wang
,
D.
Liu
, and
J.
Griffiths
,
Nanotechnology
28
,
125208
(
2017
).
10.
S. Y.
Chou
,
J. Vac. Sci. Technol. B
15
,
2897
(
1997
).
11.
T. S.
Kulmala
,
C. D.
Rawlings
,
M.
Spieser
,
T.
Glinsner
,
A.
Schleunitz
,
F.
Bullerjahn
, and
F.
Holzner
,
SPIE Adv. Lithogr.
10584
,
1058412
(
2018
).
12.
J.
Tsuchiya
,
S.
Hiwasa
, and
J.
Taniguchi
,
Microelectron. Eng.
193
,
98
(
2018
).
13.
M.-M.
Walz
,
F.
Vollnhals
,
F.
Rietzler
,
M.
Schirmer
,
H.-P.
Steinrück
, and
H.
Marbach
,
Appl. Phys. Lett.
100
,
53118
(
2012
).
14.
E. H.
Anderson
,
D.
Olynick
,
W.
Chao
,
B.
Harteneck
, and
E.
Veklerov
,
J. Vac. Sci. Technol. B
19
,
2504
(
2001
).
15.
K.
Wilder
,
J. Vac. Sci. Technol. B
16
,
3864
(
1998
).
16.
M.
Kaestner
 et al.,
JMEMS
14
,
031209
(
2015
).
17.
I. W.
Rangelow
 et al.,
J. Vac. Sci. Technol. B
35
, 06G101 (
2017
).
18.
V.
Ishchuk
 et al.,
Appl. Phys. A Mater. Sci. Process.
123
,
89
(
2017
).
19.
M.
Kaestner
 et al.,
J. Micro/Nanolithogr. MEMS MOEMS
14
,
031202
(
2015
).
20.
M.
Kaestner
and
I. W.
Rangelow
,
J. Vac. Sci. Technol. B
29
,
06FD02
(
2011
).
21.
P. D.
Prewett
 et al.,
Beilstein J. Nanotechnol.
9
,
2855
(
2018
).
22.
M.
Hofmann
 et al.,
Am. J. Nano Res. Appl.
6
,
11
(
2018
).
23.
R.
Kassing
and
I. W.
Rangelow
,
Microsyst. Technol.
3
,
20
(
1996
).
24.
I. W.
Rangelow
,
J. Vac. Sci. Technol. A
21
,
1550
(
2003
).
25.
V.
Ishchuk
,
D. L.
Olynick
,
Z.
Liu
, and
I. W.
Rangelow
,
J. Appl. Phys.
118
,
053302
(
2015
).
26.
I. W.
Rangelow
,
J. Vac. Sci. Technol. B
13
,
2394
(
1995
).
You do not currently have access to this content.