Predictions are made for the radiation-induced carbon contamination threat to ruthenium-coated extreme ultraviolet (EUV) optics for a range of incident EUV intensities, exposure pressures and types of hydrocarbon. A calculational philosophy is developed that acknowledges the ruthenium capping layer may have adsorbed oxygen on it and that the carbon contamination film is partially hydrogenated. The calculations incorporate the Nitta Multisite Adsorption framework, which accounts for the configurational adsorption difficulty encountered by the adsorption of large molecules on surfaces. Contributions from “out-of-band” radiation are included, both in the direct photon-induced dissociation of hydrocarbon molecules and in the out-of-band production of secondary electrons. For the hydrocarbon molecules, n-tetradecane, n-dodecane, n-decane, and benzene, for a range of EUV powers and hydrocarbon pressures, predictions are made for carbon thicknesses, the overall carbon deposition rates, and the relative amounts of contamination produced by primary photon excitation, secondary electrons, and out-of-band radiation. The comparison is made to relevant prior experiments. The model, with no adjustable parameters, provides a good account of prior experiments on n-tetradecane, n-decane, and benzene over the pressure ranges examined by the experiments (∼1 × 10−10 to ∼1 × 10−7 Torr) and over the EUV intensity range 0.001–100 mW/mm2. The level of agreement is within a factor of ∼4 or better, which is consistent with expectations based on the experimental uncertainties. Comparison with prior data for n-decane indicates that the carbon deposit produced by the EUV-induced dissociation of hydrocarbons is substantially hydrogenated. Out-of-band radiation accounts for ∼9%–12% of the overall optic contamination. Secondary electrons account for ∼2% of the overall optic contamination. The results show that the dominant mechanistic cause of the EUV carbon contamination is primary photon absorption by the adsorbed hydrocarbon molecule. The removal of carbon or hydrogen by electron stimulated desorption due to secondary electrons or photon stimulated desorption by primary EUV absorption can be safely ignored as negligible compared to the EUV-induced carbon deposition rate. The results allow comparison with past experiments, provide a framework for conducting future experiments, and predict contamination threats relevant for practical EUV lithography tool operation. The calculations also clarify the underlying physical phenomena at work in the EUV carbon contamination problem.

1.
D. A.
Tichenor
 et al.,
Proc. SPIE
4343
,
19
(
2001
).
2.
R.
van Es
 et al.,
Proc. SPIE
10583
,
105830H
(
2018
).
3.
M.
van de Kerkhof
 et al.,
Proc. SPIE
10143
,
101430D
(
2017
).
4.
A.
Pirati
 et al.,
Proc. SPIE
9422
,
94221P
(
2015
).
5.
T.
Feigl
 et al.,
Proc. SPIE
8679
,
86790C-1
(
2013
).
6.
J.
Hollenshead
and
L.
Klebanoff
,
J. Vac. Sci. Technol. B
24
,
118
(
2006
).
7.
J.
Hollenshead
and
L.
Klebanoff
,
J. Vac. Sci. Technol. B
24
,
64
(
2006
).
8.
R. R.
Kunz
,
V.
Liberman
, and
D. K.
Downs
,
J. Vac. Sci. Technol. B
18
,
1306
(
2000
).
9.
R.
Schäfer
,
G.
Schmidtke
,
T.
Strahl
,
M.
Pfeifer
, and
R.
Brunner
,
Adv. Space Res.
59
,
2207
(
2017
).
10.
Yi-Sheng Liu, beamline scientist at the Advanced Light Source, Berkeley, CA to L.E. Klebanoff, private communication (October 9, 2017).
11.
L. E.
Klebanoff
,
M. E.
Malinowski
,
P.
Grunow
,
W. M.
Clift
,
C.
Steinhaus
,
A. H.
Leung
, and
S. J.
Haney
,
Proc. SPIE
4343
,
342
(
2001
).
12.
S.
Matsunari
 et al.,
Proc. SPIE
6517
,
65172X-1
(
2007
).
13.
T.
Nakayama
,
A.
Miyake
,
H.
Takase
,
S.
Terashima
,
T.
Sudo
,
Y.
Watanabe
, and
Y.
Fukuda
,
Proc. SPIE
7271
,
72713P-1
(
2009
).
14.
T.
Nakayama
 et al.,
Proc. SPIE
6921
,
69213B-1
(
2008
).
15.
R.
Garg
,
A.
Wüest
,
E.
Gullikson
,
S.
Bajt
, and
G.
Denbeaux
,
Proc. SPIE
6921
,
692136-1
(
2008
).
16.
K.
Koida
and
M.
Niibe
,
Appl. Surf. Sci.
256
,
1171
(
2009
).
17.
L. E.
Klebanoff
,
M. E.
Malinowski
,
W. M.
Clift
,
C.
Steinhaus
, and
P.
Grunow
,
J. Vac. Sci. Technol. A
22
,
425
(
2004
).
18.
K.
Murakami
,
T.
Yamaguchi
,
A.
Yamazaki
,
N.
Kandaka
,
M.
Shiraishi
,
S.
Matsunari
,
T.
Aoki
, and
S.
Kawata
,
Proc. SPIE
7636
,
76361U-1
(
2010
).
19.
M.
Schürmann
,
S.
Yulin
,
V.
Nesterenko
,
T.
Feigl
,
N.
Kaiser
,
B.
Tkachenko
, and
M. C.
Schürmann
,
Proc. SPIE
7636
,
76361P-1
(
2010
).
20.
S. B.
Hill
 et al.,
Proc. SPIE
7969
,
79690M-1
(
2011
).
21.
S. B.
Hill
,
N. S.
Faradzhev
,
L. J.
Richter
, and
T. B.
Lucatorto
,
Proc. SPIE
7636
,
76360E
(
2010
).
22.
S. B.
Hill
,
N. S.
Faradzhev
,
C. S.
Tarrio
,
T. B.
Lucatorto
,
R. A.
Bartynski
,
B. V.
Yakshinskiy
, and
T. E.
Madey
,
Proc. SPIE
7271
,
727113-1
(
2009
).
23.
S. B.
Hill
,
N. S.
Faradzhev
,
C.
Tarrio
,
T. B.
Lucatorto
,
T. E.
Madey
,
B. V.
Yakshinskiy
,
E.
Loginova
, and
S.
Yulin
,
Proc. SPIE
6921
,
692117-1
(
2008
).
24.
Y.-J.
Fan
 et al.,
Proc. SPIE
7636
,
76360G
(
2010
).
25.
V.
Jindal
,
R.
Garg
,
G.
Denbeaux
, and
A.
Wüest
,
Proc. SPIE
7271
,
72713Q-1
(
2009
).
26.
P.
Thomas
 et al.,
Proc. SPIE
7636
,
76361X-1
(
2010
).
27.
I.
Mori
 et al.,
Proc. SPIE
6921
,
692102-1
(
2008
).
28.
J. L.
Brand
,
M. V.
Arena
,
A. A.
Deckert
, and
S. M.
George
,
J. Chem. Phys.
92
,
5136
(
1990
).
29.
W. M.
Clift
,
L.
Klebanoff
,
C.
Tarrio
,
S.
Grantham
,
O. R.
Wood
 II
,
S.
Wurm
, and
N. V.
Edwards
,
Proc. SPIE
5374
,
666
(
2004
).
30.
M.
Malinowski
,
P.
Grunow
,
C.
Steinhaus
,
M.
Clift
, and
L.
Klebanoff
,
Proc. SPIE
4343
,
347
(
2001
).
31.
S.
Graham
,
C.
Steinhaus
,
M.
Clift
, and
L.
Klebanoff
,
J. Vac. Sci. Technol. B
20
,
2393
(
2002
).
32.
L.
Belau
,
J. Y.
Park
,
T.
Liang
,
H.
Seo
, and
G. A.
Somorjai
,
J. Vac. Sci. Technol. B
27
,
1919
(
2009
).
33.
L. E.
Klebanoff
and
R. H.
Stulen
, U.S. patent 6,664,554 B2 (
16 December 2003
).
34.
S.
Bajt
,
N. V.
Edwards
, and
T. E.
Madey
,
Surf. Sci. Rep.
63
,
73
(
2008
).
35.
S.
Bajt
 et al.,
J. Microlith. Microfab. Microsyst.
5
,
023004-1
(
2006
).
36.
Y. B.
He
 et al.,
J. Phys. Chem. C
111
,
10988
(
2007
).
37.
S.
Bajt
 et al.,
Proc. SPIE
5751
,
118
(
2005
).
38.
T. E.
Madey
,
N. S.
Faradzhev
,
B. V.
Yakshinskiy
, and
N. V.
Edwards
,
Appl. Surf. Sci.
253
,
1691
(
2006
). Figure 1 of this paper shows the atomic structures of ideal, planar hcp Ru(0001) and Ru(101¯0) surfaces. Because of the ABAB…. stacking sequence in the hcp structure, there are two different atomic arrangements for Ru surface atoms on the Ru(101¯0) surface.
40.
T. E.
Madey
,
H. A.
Engelhardt
, and
D.
Menzel
,
Surf. Sci.
48
,
304
(
1975
).
41.
S.
Graham
,
C.
Steinhaus
,
M.
Clift
,
L.
Klebanoff
, and
S.
Bajt
,
Proc. SPIE
5037
,
460
(
2003
).
42.
I.
Nishiyama
,
H.
Oizumi
,
K.
Motai
,
A.
Izumi
,
T.
Ueno
,
H.
Akiyama
, and
A.
Namiki
,
J. Vac. Sci. Technol. B
23
,
3129
(
2005
).
43.
D.
Ugur
,
A. J.
Storm
,
R.
Verberk
,
J. C.
Brouwer
, and
W. G.
Sloof
,
J. Phys. Chem. C
116
,
26822
(
2012
).
44.
G.
Lauth
,
E.
Schwarz
, and
K.
Christmann
,
J. Chem. Phys.
91
,
3729
(
1989
).
45.
D.
Denley
,
P.
Perfetti
,
R. S.
Williams
,
D. A.
Shirley
, and
J.
Stöhr
,
Phys. Rev. B
21
,
2267
(
1980
).
46.
R. A.
Rosenberg
and
D. C.
Mancini
,
Nucl. Instrum. Methods A
291
,
101
(
1990
).
47.
J.
Chen
 et al.,
Opt. Express
17
,
16969
(
2009
).
48.
J.
Chen
,
C. J.
Lee
,
E.
Louis
,
F.
Bijkerk
,
R.
Kunze
,
H.
Schmidt
,
D.
Schneider
, and
R.
Moors
,
Diam. Relat. Mater.
18
,
768
(
2009
).
49.
Y.
Nishiyama
,
T.
Anazawa
,
H.
Oizumi
,
I.
Nishiyama
,
O.
Suga
,
K.
Abe
,
S.
Kagata
, and
A.
Izumi
,
Proc. SPIE
6921
,
692116
(
2008
).
50.
T.
Matsuura
,
S.
Okubo
,
K.
Oda
, and
T.
Ushiro
,
SEI Tech. Rev.
65
,
30
(
2007
).
51.
E. M.
Malykhin
,
V. A.
Krivchenko
,
D. V.
Lopaev
,
T. V.
Rakhimova
, and
S. M.
Zyryanov
,
Mosc. Univ. Phys. Bull.
66
,
54
(
2011
).
52.
N. S.
Faradzhev
,
M.
McEntee
,
J. T.
Yates
 Jr.
,
S. B.
Hill
, and
T. B.
Lucatorto
,
J. Phys. Chem. C
117
,
23072
(
2013
).
53.
J. J.
Pireaux
,
S.
Svensson
,
E.
Basilier
,
P-Å
Malmqvist
,
U.
Gelius
,
R.
Caudano
, and
K.
Siegbahn
,
Phys. Rev. A
14
,
2133
(
1976
). Figures 8–12 and 14 display XPS spectra for linear alkanes that show that by nonane (C9H20), the discrete valence electron states are merging into dispersed electron bands.
54.
R.
Hoffmann
,
J. Chem. Phys.
39
,
1397
(
1963
).
55.
S. M.
Goldberg
,
C. S.
Fadley
, and
S.
Kono
,
J. Elect. Spectrosc. Relat. Phenom.
21
,
285
(
1981
).
56.
N.
Ueno
,
K.
Seki
,
N.
Sato
,
H.
Fujimoto
,
T.
Kuramochi
,
K.
Sugita
, and
H.
Inokuchi
,
Phys. Rev. B
41
,
1176
(
1990
).
57.
G.
Ungar
,
J. Mater. Sci.
16
,
2635
(
1981
).
58.
A.
Chapiro
,
Nucl. Instrum. Methods B
32
,
111
(
1988
).
59.
R.
Partridge
,
J. Chem. Phys.
52
,
2485
(
1970
).
60.
The average of literature values for the binding of benzene to graphite is 39.88 kJ/mol as described later in the text.
61.
The average of literature values for the binding of benzene to a monolayer of benzene, extracted from multilayer adsorption studies, is 37.68 kJ/mol.
62.
S. L.
Tait
,
Z.
Dohnalek
,
C. T.
Campbell
, and
B. D.
Kay
,
J. Chem. Phys.
125
,
234308-1
(
2006
). Figure 1(C) of this paper shows the thermal desorption spectra of methane from Pt(111), as discussed in the text.
63.
T.
Li
,
M.
Kim
,
R.
Rai
,
Z.
Liang
,
A.
Asthagiri
, and
J. F.
Weaver
,
Phys. Chem. Chem. Phys.
18
,
22647
(
2016
).
65.
B. A.
Sexton
and
A. E.
Hughes
,
Surf. Sci.
140
,
227
(
1984
).
66.
S. M.
Wetterer
,
D. J.
Lavrich
,
T.
Cummings
,
S. L.
Bernasek
, and
G.
Scoles
,
J. Phys. Chem. B.
102
,
9266
(
1998
).
67.
K. R.
Paserba
and
A. J.
Gellman
,
J. Chem. Phys.
115
,
6737
(
2001
).
68.
J. A.
Polta
and
P. A.
Thiel
,
J. Am. Chem. Soc.
108
,
7560
(
1986
).
69.
P.
Jakob
and
D.
Menzel
,
Surf. Sci.
201
,
503
(
1988
).
70.
R.
Zacharia
,
H.
Ulbricht
, and
T.
Hertel
,
Phys. Rev. B
69
,
155406
(
2004
).
71.
H.
Ulbricht
,
R.
Zacharia
,
N.
Cindir
, and
T.
Hertel
,
Carbon
44
,
2931
(
2006
).
72.
D.
Dollimore
,
G. R.
Heal
, and
D. R.
Martin
,
J. Chem. Soc. Faraday Trans. 1
68
,
832
(
1972
).
73.
S. L.
Tait
,
Z.
Dohnalek
,
C. T.
Campbell
, and
B. D.
Kay
,
J. Chem. Phys.
122
,
164708
(
2005
).
74.
T.
Nitta
,
T.
Shigetomi
,
M.
Kuro-oka
, and
T.
Katayama
,
J. Chem. Eng. Jpn.
17
,
39
(
1984
).
75.
P. J.
Flory
,
J. Chem. Phys.
10
,
51
(
1942
).
76.
P.
Atkins
and
J.
de Paula
,
Physical Chemistry: Thermodynamics, Structure and Change
, 10th ed. (
W.H. Freeman
,
New York
,
2014
), p.
986
.
77.
S. A.
George
,
P. P.
Naulleau
,
S.
Rekawa
,
E.
Gullikson
, and
C. D.
Kemp
,
J. Micro/Nanolith. MEMS MOEMS
8
,
041502-1-8
(
2009
) Figure 4 of this paper shows the reflectance of an Mo/Si optic for both EUV and OOB radiation; Figure 7 reports the EUV and OOB radiation issuing from a Sn droplet source.
78.
J. W.
Au
,
G.
Cooper
,
G. R.
Burton
,
T. N.
Olney
, and
C. E.
Brion
,
Chem. Phys.
173
,
209
(
1993
).
79.
Calculations were made for an Mo/Si multilayer with a 2.5 nm thick ruthenium capping layer. The angle of incidence from the surface normal was 8 degrees, and the radiation was considered unpolarized. The calculations extended to 800 nm. From 800 to 1000 nm, we assumed an optic reflectivity of 0.
80.
The Center for X-ray Optics (CXRO) calculational tool was used to predict the reflectivity of the carbon contamination for the various wavebands. This tool can be found at http://henke.lbl.gov/optical_constants/mirror2.html. The calculation was run using a carbon contamination density of 1.0 g/cm3, for normal incidence radiation (fixed angle = 90 degrees), polarization = 1.0, roughness = 0.0. Calculations were performed over the wavelength range 5–41 nm available on the website. Beyond the calculational limit of 41 nm, we set the carbon reflectivity to 1 × 10−19, leading to the results of Table III.
81.
The CXRO calculational tool was used to predict the photoabsorption cross sections σph of the elemental atoms C and H for the in-band EUV waveband. This tool can be found at http://henke.lbl.gov/optical_constants/pert_form.html.
82.
The photoabsorption cross section σph for the OOB wavebands for our study were estimated using the results of Ref. 78, scaling the results by the number of carbon atoms in n-tetradecane, n-dodecane and n-decane. Beyond the 165 nm wavelength limit for the results of Ref. 78, we assumed the OOB σph value were the same as for 165 nm, producing the results indicated in Table IV for the OOB: UV1, OOB: UV2, OOB: UV3 and OOB: VIS-NIR wavebands.
83.
H.
Keller-Rudek
,
G. K.
Moortgat
,
R.
Sander
, and
R.
Sörensen
,
Earth Syst. Sci. Data
5
,
365
(
2013
). The benzene photoabsorption data ranged from 5 to 280 nm. Beyond 280 up to 1000 nm, we assumed the σph value was 0.0 for benzene.
84.
G.
Leclerc
,
Z.
Cui
, and
L.
Sanche
,
J. Phys. Chem.
91
,
6461
(
1987
).
86.
G.
Reich
,
J. Vac. Sci. Technol.
20
,
1148
(
1982
).
87.
The EUV transmission of carbon can be calculated using the website of the Center for X-ray Optics (CXRO) at Lawrence Berkeley National Lab. See: http://henke.lbl.gov/optical_constants/filter2.html.
88.
A. F. G.
Leontowich
and
A. P.
Hitchcock
,
J. Vac. Sci. Technol. B
30
,
030601
(
2012
).
89.
K.
Weiss
,
J.
Weckesser
, and
Ch.
Wöll
,
J. Mol. Struc.-THEOCHEM
458
,
143
(
1999
).
90.
Ch.
Wöll
,
J. Synchrotron Radiat.
8
,
129
(
2001
).
91.
B. V.
Yakshinskiy
,
R.
Wasielewski
,
E.
Loginova
,
M. N.
Hedhili
, and
T. E.
Madey
,
Surf. Sci.
602
,
3220
(
2008
).
92.
B. V.
Yakshinskiy
,
R.
Wasielewski
,
E.
Loginova
, and
T. E.
Madey
,
Proc. SPIE
6517
,
65172Z
(
2007
).
93.
T. E.
Madey
and
J. T.
Yates
 Jr.
,
Surf. Sci.
76
,
397
(
1978
).
94.
J. A.
Kelber
and
M. L.
Knotek
,
Surf. Sci.
121
,
L499
(
1982
).
95.
J. A.
Kelber
and
M. L.
Knotek
,
J. Vac. Sci. Technol. A
1
,
1149
(
1983
).
96.
J. A.
Kelber
,
R. R.
Daniels
,
M.
Turowski
,
G.
Margaritondo
,
N. H.
Tolk
, and
J. S.
Kraus
,
Phys. Rev. B
30
,
4748
(
1984
).
97.
An excellent description of the Temkin model of adsorption can be found in
C. J.
Pursell
,
H.
Hartshorn
,
T.
Ward
,
B. D.
Chandler
, and
F.
Boccuzzi
,
J. Phys. Chem. C
115
,
23880
(
2011
).
98.
K. R.
Paserba
and
A. J.
Gellmann
,
Phys. Rev. Lett.
86
,
4338
(
2001
).
99.
R. M.
Slayton
,
C. M.
Aubuchon
,
T. L.
Camis
,
A. R.
Noble
, and
N. J.
Tro
,
J. Phys. Chem.
99
,
2151
(
1995
).
100.
A. R.
Bishop
,
G. S.
Girolami
, and
R. G.
Nuzzo
,
J. Phys. Chem. B
104
,
754
(
2000
).
101.
S.
Suzuki
,
Y.
Yamaguchi
,
H.
Onishi
,
T.
Sasaki
,
K.
Fukui
, and
Y.
Iwasawa
,
J. Chem. Soc. Faraday Trans.
94
,
161
(
1998
).
102.
S.
Reiβ
,
H.
Krumm
,
A.
Niklewski
,
V.
Staemmler
, and
Ch.
Wöll
,
J. Chem. Phys.
116
,
7704
(
2002
).
103.
T. J.
Rockey
,
M.
Yang
, and
H.-L.
Dai
,
J. Phys. Chem. B
110
,
19973
(
2006
).
104.
H.-P.
Steinrück
,
W.
Huber
,
T.
Pache
, and
D.
Menzel
,
Surf. Sci.
218
,
293
(
1989
).
105.
Y.
Taguchi
,
M.
Fujisawa
,
T.
Takaoka
,
T.
Okada
, and
M.
Nishijima
,
J. Chem. Phys.
95
,
6870
(
1991
).
106.
D.
Pöss
,
W.
Ranke
, and
K.
Jacobi
,
Surf. Sci.
105
,
77
(
1981
).
107.
See supplementary material at https://doi.org/10.1116/1.5072797 for general model predictions of the radiation-induced carbon contamination of EUV optics, including model predictions for hydrocarbon pressures expected for lithographic tools (The Lithography Set). The SM also describes how the molecular binding energies for the hydrocarbons of interest were determined from the surface science literature. The SM presents a detailed assessment of the possible contribution of ESD and PSD to the EUV-induced carbon contamination problem, as well as a discussion of the results of Ref. 88 as they relate to the radiation-induced carbon contamination problem. Additionally, the SM assesses the applicability of the Temkin adsorption isotherm to EUV-induced carbon contamination of optics. Finally, a plot is given of the calculated wavelength-dependent reflectivity of the Ru-capped Mo/Si optic considered in this study.

Supplementary Material

You do not currently have access to this content.