Capacitors based on 10 nm antiferroelectric silicon-doped hafnium oxide (Si:HfO2) thin films are investigated in terms of energy storage efficiency, cycling endurance, and reliability. Atomic layer deposition (ALD) on an area-enhanced substrate with large-scale arrays of deep-trench structures is used to significantly increase the energy density, yielding a value of 450 μJ/cm2 and an energy storage efficiency of 67% at a voltage of 3 V. High breakdown fields are obtained, and the reliability measurement indicates that more than 90% of the devices survive three years when subjected to an operating voltage of 3 V. The film stoichiometry is optimized in terms of energy storage properties to achieve an antiferroelectric-like hysteresis loop with low fatigue during electric field cycling and uniform electrical characteristics throughout the 300 mm wafer. Si:HfO2 is a promising material for novel integrated energy storage applications, as it combines CMOS compatible manufacturing, high scalability, and conformal deposition using ALD.

1.
X.
Tian
,
S.
Shibayama
,
T.
Nishimura
,
T.
Yajima
,
S.
Migita
, and
A.
Toriumi
,
Appl. Phys. Lett.
112
,
102902
(
2018
).
2.
J.
Müller
,
T. S.
Böscke
,
U.
Schroder
,
R.
Hoffmann
,
T.
Mikolajick
, and
L.
Frey
,
IEEE Electron Device Lett.
33
,
185
(
2012
).
3.
S. W.
Smith
,
A. R.
Kitahara
,
M. A.
Rodriguez
,
M. D.
Henry
,
M. T.
Brumbach
, and
J. F.
Ihlefeld
,
Appl. Phys. Lett.
110
,
072901
(
2017
).
4.
C.
Mart
,
T.
Kämpfe
,
S.
Zybell
, and
W.
Weinreich
,
Appl. Phys. Lett.
112
,
052905
(
2018
).
5.
M. H.
Park
 et al,
Adv. Mater.
27
,
1811
(
2015
).
6.
P.
Polakowski
and
J.
Müller
,
Appl. Phys. Lett.
106
,
232905
(
2015
).
7.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
8.
Y.
Wei
 et al,
Nat. Mater.
17
,
1095
(
2018
).
9.
M. H.
Park
 et al,
J. Mater. Chem. C
5
,
4677
(
2017
).
10.
T.
Shiraishi
 et al,
Appl. Phys. Lett.
108
,
262904
(
2016
).
11.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Mueller
,
D.
Bräuhaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
,
Nano Lett.
12
,
4318
(
2012
).
12.
R.
Materlik
,
C.
Künneth
, and
A.
Kersch
,
J. Appl. Phys.
117
,
134109
(
2015
).
13.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
,
Adv. Energy Mater.
4
,
1400610
(
2014
).
14.
M.
Hoffmann
,
U.
Schroeder
,
C.
Künneth
,
A.
Kersch
,
S.
Starschich
,
U.
Böttger
, and
T.
Mikolajick
,
Nano Energy
18
,
154
(
2015
).
15.
F.
Ali
,
X.
Liu
,
D.
Zhou
,
X.
Yang
,
J.
Xu
,
T.
Schenk
,
U.
Schroeder
,
F.
Cao
, and
X.
Dong
,
J. Appl. Phys.
122
,
144105
(
2017
).
16.
M.
Pesic
,
M.
Hoffmann
,
C.
Richter
,
T.
Mikolajick
, and
U.
Schröder
,
Adv. Funct. Mater.
26
,
7486
(
2016
).
17.
P.
Polakowski
,
S.
Riedel
,
W.
Weinreich
,
M.
Rudolf
,
J.
Sundqvist
,
K.
Seidel
, and
J.
Müller
,
International Memory Workshop (IMW) 2014
,
Taipei, Taiwan,
18–21 May 2014
(
IEEE
,
New York
,
2014
).
18.
C.
Mart
,
W.
Weinreich
,
M.
Czernohorsky
,
S.
Riedel
,
S.
Zybell
, and
K.
Kühnel
,
European Solid-State Device Research Conference (ESSDERC) 2018
,
Dresden, Germany,
3–6 September 2018
(
IEEE
,
New York
,
2018
).
19.
M.
Rose
,
J.
Niinistö
,
I.
Endler
,
J. W.
Bartha
,
P.
Kücher
, and
M.
Ritala
,
ACS Appl. Mater. Interfaces
2
,
347
(
2010
).
20.
D.
Zhou
,
J.
Xu
,
Q.
Li
,
Y.
Guan
,
F.
Cao
,
X.
Dong
,
J.
Müller
,
T.
Schenk
, and
U.
Schröder
,
Appl. Phys. Lett.
103
,
192904
(
2013
).
21.
S.
Pae
 et al,
2012 IEEE International Reliability Physics Symposium (IRPS)
,
Anaheim, CA,
15–19 April 2012
(
IEEE
,
New York
,
2012
).
22.
P.
Chakraborti
,
S.
Gandhi
,
H.
Sharma
,
P. M.
Raj
,
K.
Rataj
, and
R.
Tummala
,
IEEE 65th Electronic Components and Technology Conference (ECTC)
,
San Diego, CA,
26–29 May 2015
(
IEEE
,
New York
,
2015
), pp.
2254
2258
.
23.
K.
Seidel
,
M.
Böttcher
,
S.
Dobritz
,
M.
Czernohorsky
,
S.
Riedel
, and
W.
Weinreich
,
2015 European Microelectronics Packaging Conference (EMPC)
,
Friedrichshafen, Germany,
14–16 September 2015
(
IEEE
,
New York
,
2015
).
You do not currently have access to this content.