This work aims at the utilization of nanostructured surfaces for advanced mass spectrometry [laser desorption/ionization mass spectrometry (LDI MS)]. The authors demonstrate that prepared nanostructures enable independent mass-to-charge calibration and also effectively substitute protonation agent for low-mass molecules instead of conventionally used matrices. Silver nanostructured surfaces were formed as homogeneous thin film, isolated nanoislands, and spherical nanoparticles. Besides the surface characterization, the paper focuses on the impact of LDI MS laser, irradiating the nanostructured surfaces, which results in the production of charged Ag clusters. Irradiated nanoparticle-based surfaces mostly provide single ionized species Ag+ while positive (Agn+, n ≤ 5) and negative ions (Agn, n ≤ 7) were observed from the nanoislands film. It is shown that the ratio between particular ion line intensities can be tailored by the deposition time. The pattern of silver ions Agn (due to two natural isotopes) can be used for mass-to-charge calibration up to 1000 m/z. Additionally, the silver protonation improves the identification of small molecules. It is demonstrated on detection of sucrose (342.3 g/mol), fructose (180.2 g/mol), and creatinine (113.1 g/mol) molecules.

1.
F.
Rosei
,
J. Phys. Condens. Matter
16
,
S1373
(
2004
).
2.
F.
Flory
,
L.
Escoubas
, and
G.
Berginc
,
J. Nanophotonics
5
,
052502
(
2011
).
3.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
,
Nat. Mater.
10
,
911
(
2011
).
4.
A.
Kolmakov
and
M.
Moskovits
,
Annu. Rev. Mater. Res.
34
,
151
(
2004
).
5.
R.
Hippler
,
H.
Kersten
,
M.
Schmidt
, and
K. H.
Schoenbach
,
Low Temperature Plasmas: Fundamentals, Technologies and Techniques
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2008
).
6.
O.
Polonskyi
 et al,
Eur. Phys. J. D
72
,
93
(
2018
).
7.
Y.
Huttel
,
Gas Phase Synthesis of Nanoparticles
(
Wiley-VCH
,
Weinheim
,
2017
).
8.
P. J.
Kelly
and
R. D.
Arnell
,
Vacuum
56
,
159
(
2000
).
9.
S.
Zhang
,
D.
Sun
,
Y.
Fu
, and
H.
Du
,
Surf. Coat. Technol.
167
,
113
(
2003
).
10.
M.
Petr
,
O.
Kylián
,
A.
Kuzminova
,
J.
Kratochvíl
,
I.
Khalakhan
,
J.
Hanuš
, and
H.
Biederman
,
Opt. Mater.
64
,
276
(
2017
).
11.
H.
Hartmann
,
V. N.
Popok
,
I.
Barke
,
V.
von Oeynhausen
, and
K. H.
Meiwes-Broer
,
Rev. Sci. Instrum.
83
,
073304
(
2012
).
12.
H.
Biederman
,
O.
Kylian
,
M.
Drabik
,
A.
Choukourov
,
O.
Polonskyi
, and
P.
Solar
,
Surf. Coat. Technol.
211
,
127
(
2012
).
13.
V. N.
Popok
,
I.
Barke
,
E. E. B.
Campbell
, and
K.-H.
Meiwes-Broer
,
Surf. Sci. Rep.
67
,
347
(
2011
).
14.
B.
Gojdka
,
V.
Hrkac
,
T.
Strunskus
,
V.
Zaporojtchenko
,
L.
Kienle
, and
F.
Faupel
,
Nanotechnology
22
,
465704
(
2011
).
15.
V.
Stranak
,
S.
Block
,
S.
Drache
,
Z.
Hubička
,
C. A.
Helm
,
L.
Jastrabík
,
M.
Tichý
, and
R.
Hippler
,
Surf. Coat. Technol.
205
,
2755
(
2011
).
16.
O.
Kylian
,
V.
Vales
,
O.
Polonskyi
,
J.
Pesicka
, and
J.
Cechvala
,
Mater. Lett.
79
,
229
(
2012
).
17.
O.
Polonskyi
 et al,
Thin Solid Films
520
,
4155
(
2012
).
18.
B. A.
Boughton
,
D.
Thinagaran
,
D.
Sarabia
,
A.
Bacic
, and
U.
Roessner
,
Phytochem. Rev.
15
,
445
(
2016
).
19.
J.
Kriegsmann
,
M.
Kriegsmann
, and
R.
Casadonte
,
Int. J. Oncol.
46
,
893
(
2015
).
20.
S. D.
Hanton
,
Chem. Rev.
101
,
527
(
2001
).
21.
N. R.
Panyala
,
V.
Prysiazhnyi
,
P.
Slavíček
,
M.
Černák
, and
J.
Havel
,
Rapid. Commun. Mass. Spectrom.
25
,
1687
(
2011
).
22.
C. Y.
Shi
and
C. H.
Deng
,
Analyst
141
,
2816
(
2016
).
23.
J. J.
van Kampen
,
P. C.
Burgers
,
R.
de Groot
,
R. A.
Gruters
, and
T. M.
Luider
,
Mass. Spectrom. Rev.
30
,
101
(
2011
).
24.
C. D.
Calvano
,
A.
Monopoli
,
T. R. I.
Cataldi
, and
F.
Palmisano
,
Anal. Bioanal. Chem.
410
,
4015
(
2018
).
25.
N. V.
Gogichaeva
and
M. A.
Alterman
,
Methods in Molecular Biology
(
Humana
,
Totowa
,
NJ
,
2012
).
26.
M.
Lu
,
X.
Yang
,
Y.
Yang
,
P.
Qin
,
X.
Wu
, and
Z.
Cai
,
Nanomaterials
7
,
87
(
2017
).
27.
S.
Ju
and
W.-S.
Yeo
,
Nanotechnology
23
,
135701
(
2012
).
28.
J.
Sekuła
,
J.
Nizioł
,
W.
Rode
, and
T.
Ruman
,
Analyst
140
,
6195
(
2015
).
29.
C. D.
Calvano
,
R.A.
Picca
,
E.
Bonerba
,
G.
Tantillo
,
N.
Cioffi
, and
F.
Palmisano
,
J. Mass. Spectrom.
51
,
828
(
2016
).
30.
Y.-F.
Huang
and
H.-T.
Chang
,
Anal. Chem.
79
,
4852
(
2007
).
31.
S. D.
Sherrod
,
A. J.
Diaz
,
W. K.
Russell
,
P. S.
Cremer
, and
D. H.
Russell
,
Anal. Chem.
80
,
6796
(
2008
).
32.
S.
Taira
,
H.
Taguchi
,
R.
Fukuda
,
K.
Uematsu
,
Y.
Ichiyanagi
,
Y.
Tanaka
,
Y.
Fujii
, and
H.
Katano
,
Mass. Spectrom. (Tokyo)
3
,
S0025
(
2014
).
33.
T.
Yonezawa
, H. Kawasaki, A. Tarui, T. Watanabe, R. Arakawa, T. Shimada, and F. Mafune,
Anal. Sci.
25
,
339
(
2009
).
34.
K. P.
Law
and
J. R.
Larkin
,
Anal. Bioanal. Chem.
399
,
2597
(
2011
).
35.
K.
Blaum
,
A.
Herlert
,
G.
Huber
,
H.-J.
Kluge
,
J.
Maul
, and
L.
Schweikhard
,
Anal. Bioanal. Chem.
377
,
1133
(
2003
).
36.
L.
Kolářová
,
L.
Kučera
,
P.
Vaňhara
,
A.
Hampl
, and
J.
Havel
,
Rapid Commun. Mass. Spectrom.
29
,
1585
(
2015
).
37.
B. N. Y.
Vanderpuije
,
G.
Han
,
V. M.
Rotello
, and
R. W.
Vachet
,
Anal. Chem.
78
,
5491
(
2006
).
38.
L.
Hua
,
J.
Chen
,
L.
Ge
, and
S. N.
Tan
,
J. Nanopart. Res.
9
,
1133
(
2007
).
39.
R.
Nayak
and
D. R.
Knapp
,
Anal. Chem.
82
,
7772
(
2010
).
40.
J.
Kratochvil
,
A.
Kuzminova
,
O.
Kylian
, and
H.
Biederman
,
Surf. Coat. Technol.
275
,
296
(
2015
).
41.
G. A.
Martınez-Castanon
,
N.
Nino-Martınez
,
F.
Martınez-Gutierrez
,
J. R.
Martınez-Mendoza
, and
F.
Ruiz
,
J. Nanopart. Res.
10
,
1343
(
2008
).
42.
V.
Stranak
,
S.
Drache
,
M.
Cada
,
Z.
Hubicka
,
M.
Tichy
, and
R.
Hippler
,
Contrib. Plasma Phys.
51
,
237
(
2011
).
43.
S.
Drache
,
V.
Stranak
,
Z.
Hubicka
,
F.
Berg
,
M.
Tichy
,
C. A.
Helm
, and
R.
Hippler
,
J. Appl. Phys.
116
,
143303
(
2014
).
44.
K.
Shrivas
and
H-F
Wu
,
Rapid Commun. Mass. Spectrom.
22
,
2863
(
2008
).
45.
D. S.
Peterson
,
Mass Spectrom. Rev.
26
,
19
(
2007
).
46.
P. J.
Trim
and
M. F.
Snel
,
Methods
104
,
127
(
2016
).
You do not currently have access to this content.