An in-depth analysis including both simulation and experimental characterization of resistive random access memories (RRAMs) with dielectric stacks composed of two layers of HfO2 and Al2O3 stacked in different orders is presented. The simulator, which includes the electrodes in the simulation domain, solves the 3D heat equation and calculates the device current. The results are employed to analyze thermal effects in bilayer HfO2 and Al2O3-based RRAMs with electrodes of Ni and Si-n+ during resistive switching (RS) operation. According to simulations and the experimental data, the narrow part of the conductive filaments (CF) is formed in the HfO2 layer in all the cases, and, therefore, no important differences are found in terms of reset voltage if the oxide stack order is changed with respect to the electrodes. This result is attributed to the fact that the heat flux in Al2O3 is higher than in the HfO2 layer and this determines the thermal behavior and RS operation. The heat transfer rate from the conductive filament to the electrodes and the surrounding oxide has been analyzed. The lateral heat flux component from the CF to the oxide is shown to be important with respect to the vertical component (from the CF to the electrodes).

1.
F.
Pan
,
S.
Gao
,
C.
Chen
,
C.
Song
, and
F.
Zeng
,
Mat. Sci. Eng.
83
,
1
(
2014
).
2.
M. A.
Villena
,
J. B.
Roldán
,
F.
Jiménez-Molinos
,
E.
Miranda
,
J.
Suñé
, and
M.
Lanza
,
J. Comput. Electron.
16
,
1095
(
2017
).
3.
M.
Lanza
,
Materials
7
,
2155
(
2014
).
4.
M.
Lanza
 et al,
Adv. Electron. Mater.
5
,
1800143
(
2019
).
5.
D.
Ielmini
and
R.
Waser
,
Resistive Switching from Fundamentals of Nanoionic Redox Processes to Memristive Device Applications
(
Wiley-VCH
,
New York
,
2015
).
6.
S.
Menzel
,
P.
Kaupmann
, and
R.
Waser
,
Nanoscale
7
,
12673
(
2015
).
7.
R.
Degraeve
,
A.
Fantini
,
N.
Raghavan
,
L.
Goux
,
S.
Clima
,
B.
Govoreanu
,
A.
Belmonte
,
D.
Linten
, and
M.
Jurczak
,
Microelectron. Eng.
147
,
171
(
2015
).
8.
N.
Suri
,
Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices
(
Springer
,
New York
,
2017
).
9.
S.
Yu
,
Y.
Wu
,
R.
Jeyasingh
,
D.
Kuzum
, and
H.-S.
Wong
,
IEEE Trans. Electron Devices
58
,
2729
(
2011
).
10.
R.
Waser
and
M.
Aono
,
Nat. Mater.
6
,
833
(
2007
).
11.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
,
Adv. Mater.
21
,
2632
(
2009
).
12.
S.
Menzel
,
B.
Klopstra
,
C.
Kügeler
,
U.
Böttger
,
G.
Staikov
, and
R.
Waser
,
Mater. Res. Soc. Symp. Proc.
1160
,
101
(
2009
).
13.
F. M.
Puglisi
,
L.
Larcher
,
A.
Padovani
, and
P.
Pavan
,
Solid-State Electron.
125
,
204
(
2016
).
14.
F. M.
Puglisi
,
N.
Zagni
,
L.
Larcher
, and
P.
Pavan
,
Trans. Electron Devices
65
,
2964
(
2018
).
15.
R.
Degraeve
 et al,
2014 IEEE 21st International Symposium on
Physical and Failure Analysis of Integrated Circuits (IPFA)
, Marina Bay Sands, Singapore, 30 June-4 July 2014 (
IEEE
,
New York
,
2014
), pp.
245
249.
16.
S.
Long
,
C.
Cagli
,
D.
Ielmini
,
M.
Liu
, and
J.
Suñé
,
IEEE Electron Device Lett.
32
,
1570
(
2011
).
17.
S.
Long
,
X.
Lian
,
T.
Ye
,
C.
Cagli
,
L.
Perniola
,
E.
Miranda
,
M.
Liu
, and
J.
Suñé
,
IEEE Electron Device Lett.
34
,
623
(
2013
).
18.
M. B.
Gonzalez
,
J. M.
Rafí
,
O.
Beldarrain
,
M.
Zabala
, and
F.
Campabadal
,
IEEE Trans. Device Mater. Reliab.
14
,
769
(
2014
).
19.
M. M.
Mallol
,
M. B.
González
, and
F.
Campabadal
,
Microelectron. Eng.
178
,
168
(
2017
).
20.
M. A.
Villena
,
M. B.
González
,
F.
Jiménez-Molinos
,
F.
Campabadal
,
J. B.
Roldán
,
J.
Suñé
,
E.
Romera
, and
E.
Miranda
,
J. Appl. Phys.
115
,
214504
(
2014
).
21.
M. A.
Villena
,
M. B.
González
,
J. B.
Roldán
,
F.
Campabadal
,
F.
Jiménez-Molinos
,
F. M.
Gómez-Campos
, and
J.
Suñé
,
Solid-State Electron.
111
,
47
(
2015
).
22.
G.
González-Cordero
,
F.
Jiménez-Molinos
,
J. B.
Roldan
,
M. B.
González
, and
F.
Campabadal
,
J. Vac. Sci. Technol. B
35
,
01A110
(
2017
).
23.
S.
Mazumder
,
Numerical Methods for Partial Differential Equations Finite Difference and Finite Volume Methods
(
Academic
,
New York
,
2015
).
24.
S.
Aldana
,
P.
García-Fernández
,
A.
Rodríguez-Fernández
,
R.
Romero-Zaliz
,
M. B.
González
,
F.
Jiménez-Molinos
,
F.
Campabadal
,
F.
Gómez-Campos
, and
J. B.
Roldán
,
J. Phys. D
50
,
335103
(
2017
).
25.
N.
Lantos
and
F.
Nataf
,
J. Comput. Phys.
229
,
9042
(
2010
).
26.
E.
Moreno
,
Z.
Hemmat
,
J. B.
Roldán
,
M. F.
Pantoja
,
A. R.
Bretones
, and
S. G.
García
,
IEEE Trans. Antennas Propag.
64
,
4919
(
2016
).
27.
M. A.
Villena
,
J. B.
Roldán
,
M. B.
González
,
P.
González-Rodelas
,
F.
Jiménez-Molinos
,
F.
Campabadal
, and
D.
Barrera
,
Solid-State Electron.
118
,
56
(
2016
).
28.
D.
Ielmini
,
IEEE Trans. Electron Devices
58
,
4309
(
2011
).
29.
S.
Kim
,
C.
Du
,
P.
Sheridan
,
W.
Ma
,
S.
Choi
, and
W. D.
Lu
,
Nano Lett.
15
,
2203
(
2015
).
30.
M. A.
Panzer
,
M.
Shandalov
,
J. A.
Rowlette
,
Y.
Oshima
,
Y. W.
Chen
,
P. C.
McIntyre
, and
K. E.
Goodson
,
IEEE Electron Device Lett.
30
,
1269
(
2009
).
31.
P.
Auerkari
, “
Mechanical and physical properties of engineering alumina ceramics
,” Technical Report,
VTT Research Center
,
1996
.
32.
E. A.
Scott
,
J. T.
Gaskings
,
S. W.
King
, and
P. E.
Hopkins
,
APL Mater.
6
,
058302
(
2018
).
You do not currently have access to this content.