A flexible vertical-channel thin-film transistor (VTFT) with a channel length of 400 nm was fabricated on a poly(ethylene naphthalate) substrate. The vertical gate-stack composed of gate electrode/gate insulator/active channel was prepared by a conformal atomic layer deposition and a dry etching process of an organic polyimide spacer. The transfer characteristics of the fabricated flexible VTFT were well confirmed after the postannealing process at 200 °C, in which the on/off ratio was obtained to be 1.8 × 102. The threshold voltage shifts were estimated to be +6.1 and −4.5 V under the positive and negative bias-stress conditions for 104 s, respectively. The device characteristics showed no remarkable degradation when delaminating from the carrier glass substrate. Furthermore, there were no marked changes in transfer curves even when the device was bent with a radius of curvature of 10 mm. A suitable choice of spacer material, optimization of the dry etching process, and employment of ultra-thin flexible film substrate were suggested to appropriate solutions for enhancing the device performance of the proposed flexible VTFTs.

1.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
7016
(
2004
).
2.
H.
Yabuta
,
M.
Sano
,
K.
Abe
,
T.
Aiba
,
T.
Den
, and
H.
Kumomi
,
Appl. Phys. Lett.
89
,
112123
(
2006
).
3.
J. G.
Um
,
M.
Mativenga
,
D.
Geng
,
X.
Li
, and
J.
Jang
,
SID Symp. Dig. Tech. Papers
45
,
1
(
2014
).
4.
J. G.
Yoon
 et al,
SID Symp. Dig. Tech. Papers
46
,
962
(
2015
).
5.
D.
Geng
,
Y. F.
Chen
,
M.
Mativenga
, and
J.
Jang
,
IEEE Electron Device Lett.
38
,
3
(
2017
).
6.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
,
22
(
2012
).
7.
M.
Nag
 et al,
J. Soc. Inf. Disp.
22
,
23
(
2014
).
8.
J. S.
Lee
,
S. P.
Chang
,
S. M.
Koo
, and
S. Y.
Lee
,
IEEE Electron Device Lett.
31
,
225
(
2010
).
9.
H. H.
Hsu
,
C. Y.
Chang
, and
C. H.
Cheng
,
IEEE Electron Device Lett.
34
,
6
(
2013
).
10.
Y.
Liu
,
H.
Zhou
,
R.
Cheng
,
W.
Yu
,
Y.
Huang
, and
X.
Duan
,
Nano Lett.
14
,
1413
(
2014
).
11.
H. I.
Yeom
,
G. B.
Moon
,
Y. Y.
Nam
,
J. B.
Ko
,
S. H.
Lee
,
J. Y.
Choe
,
J. H.
Choi
,
C. S.
Hwang
, and
S. H. K.
Park
,
SID Symp. Dig. Tech. Papers
47
,
1
(
2016
).
12.
L.
Petti
,
P.
Aguirre
,
N.
Munzenrieder
,
G. A.
Salvatore
,
C.
Zysset
,
A.
Frutiger
,
L.
Buthe
,
C.
Vogt
, and
G.
Troster
,
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
New York
,
2013
).
13.
Y. M.
Kim
,
H. B.
Kang
,
G. H.
Kim
,
C. S.
Hwang
, and
S. M.
Yoon
,
IEEE Electron Device Lett.
38
,
1387
(
2017
).
14.
H. R.
Kim
,
J. H.
Yang
,
G. H.
Kim
, and
S. M.
Yoon
,
International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)
(
IEEE, Kyoto
,
Japan
,
2018
), p.
16
.
15.
M. J.
Park
 et al,
J. Mater. Chem. C.
3
,
4779
(
2015
).
16.
S. M.
Yoon
,
N. J.
Seong
,
K. J.
Choi
,
G. H.
Seo
, and
W. C.
Shin
,
ACS Appl. Mater. Interfaces
9
,
22676
(
2017
).
17.
R. L.
Hoffman
,
B. J.
Norris
, and
J. F.
Wager
,
Appl. Phys. Lett.
82
,
5
(
2003
).
18.
S. Y.
Park
,
S. H.
Bang
,
S. J.
Lee
,
J. H.
Park
,
Y. B.
Ko
, and
H. T.
Jeon
,
J. Nanosci. Nanotechnol.
11
,
7
(
2011
).
19.
Q.
Feng
,
L. M.
Li
,
Y.
Hao
,
J. Y.
Ni
, and
J. C.
Zhang
,
Solid State Electron.
53
,
9
(
2009
).
20.
J. M.
Byun
and
S. Y.
Lee
,
Trans. Electr. Electron. Mater.
19
,
1
(
2018
).
21.
R. B. M.
Cross
and
M. M.
De Souza
,
Appl. Phys. Lett.
89
,
263513
(
2006
).
22.
P.
Goorn
,
P.
Holzer
,
T.
Riedl
,
W.
Kowalsky
,
J.
Wang
,
T.
Weimann
,
P.
Hinze
, and
S.
Kipp
,
Appl. Phys. Lett.
90
,
063502
(
2007
).
23.
Y.
Vygranenko
,
K.
Wang
, and
A.
Nathan
,
Appl. Phys. Lett.
91
,
263508
(
2007
).
24.
A.
Suresh
and
J. F.
Muth
,
Appl. Phys. Lett.
92
,
033502
(
2008
).
25.
Z.
Ye
and
M.
Wong
,
IEEE Electron Device Lett.
33
,
4
(
2012
).
You do not currently have access to this content.