More than 40 years after its invention, the atomic force microscopy (AFM) can be integrated with scanning electron microscope (SEM) instruments as an increasingly capable and productive characterization tool with sub-nanometer spatial resolution. The authors have designed and developed an AFM instrument capable to be integrated into any SEM or in a combination of SEM with a focused ion-beam (FIB) tool. The combination of two or more different types of techniques like SEM, energy dispersive x-ray spectroscopy, and AFM is called correlative microscopy because analytical information from the same place of the sample can be obtained and correlated. For the first time, they introduced to the SEM/FIB tool correlative nanofabrication methods like field-emission scanning probe lithography, tip-based electron beam induced deposition, and nanomachining. The combination of all these methods provides a completely new nanotechnology instrument, which should be seen as a tool for correlative nanofabrication and microscopy. Thus, it provides for the first time the capabilities of a stand-alone instrument with the capabilities of nondestructive three-dimensional tip-based metrology and nanofabrication into the combined SEM/FIB tool. In this article, the authors describe all these methods in detail and present a brief example of the results obtained. They demonstrate that the self-sensing, self-actuating cantilevers (called active cantilevers) equipped with Diamond tip are a versatile toolkit for fast imaging and emerging nanofabrication. The AFM integrated into SEM is using active cantilevers that can characterize and generate nanostructures all in situ without the need to break-vacuum or contaminate the sample.

1.
Yu K.
Ryu
and
Ricardo
Garcia
,
Nanotechnology
28
,
142003
(
2017
).
2.
I. W.
Rangelow
 et al,
J. Vac. Sci. Technol. B
34
,
06K202
(
2016
).
3.
David
Cooper
,
Cyril
Ailliot
,
Jean-Paul
Barnes
,
Jean-Michel
Hartmann
,
Phillipe
Salles
,
Gerard
Benassayag
, and
Rafal E.
Dunin-Borkowski
,
Ultramicroscopy
110
,
383
(
2010
).
4.
T.
Angelov
 et al,
J. Vac. Sci. Technol. B
34
,
06KB01
(
2016
).
5.
W.
Barth
 et al,
J. Vac. Sci. Technol. B
18
,
3544
(
2000
).
6.
I. W.
Rangelow
 et al,
J. Vac. Sci. Technol. B
16
,
3185
(
1998
).
7.
Ivo W.
Rangelow
,
Tzvetan
Ivanov
,
Peter
Hudek
, and
Olaf
Fortagne
,
Device and method for mask-less AFM microlithography
, U.S. patent 7,141,808 (
2005
).
8.
Ivo W.
Rangelow
,
Tzvetan
Ivanov
, and
Galina
Stancheva
,
Circuit arrangement for parallel cantilever arrays for scanning force microscopy
, EU patent O2009040236 (
2009
).
9.
M.
Kaestner
 et al,
J. Vac. Sci. Technol. B
32
,
06F101
(
2014
).
10.
M.
Kaestner
,
M.
Hofer
, and
I. W.
Rangelow
,
J. Micro/Nanolithogr. MEMS MOEMS
12
,
031111
(
2013
).
11.
M.
Kaestner
 et al,
J. Micro/Nanolithogr. MEMS MOEMS
14
,
0311202
(
2015
).
12.
M.
Donald
,
Nanotechnology
, edited by Gregory Timp (
Springer
, New York,
1999
), p.
164
.
13.
Russell
Cinque
,
Tadashi
Komagata
,
Taiichi
Kiuchi
,
Clyde
Browning
,
Patrick
Schiavone
,
Paolo
Petroni
,
Luc
Martin
, and
Thomas
Quaglio
,
Proc. SPIE
8880
,
88801F
(
2013
).
14.
Ivo W.
Rangelow
 et al,
J. Vac. Sci. Technol. B
35
,
06G101
(
2017
).
15.
A.
Ahmad
,
A.
Schuh
, and
I. W.
Rangelow
,
Rev. Sci. Instrum.
85
,
103706
(
2014
).
16.
Ronald
Dixson
,
Boon Ping
Ng
, and
Ndubuisi
Orji
,
Meas. Sci. Technol.
25
,
094003
(
2014
).
17.
Masaaki
Takasuka
,
Yu
Okada
,
Hiromi
Hayashi
, and
Masatoshi
Echigo
,
Proc. SPIE
7972
,
797223
(
2011
).
18.
Willem F.
van Dorp
,
Bob
van Someren
,
Cornelis W.
Hagen
,
Pieter
Kruit
, and
Peter A.
Crozier
,
NANO Lett.
5
,
71303-1307
(
2005
).
19.
W. F.
van Dorp
and
C. W.
Hagen
,
J. Appl. Phys.
104
,
081301
(
2008
).
20.
I.
Utke
,
P.
Hoffmann
, and
J.
Melngailis
,
J. Vac. Sci. Technol. B
26
,
1197
(
2008
).
21.
R. R.
Kunz
and
T. M.
Mayer
,
J. Vac. Sci. Technol. B
6
,
1557
(
1988
).
22.
H. W. P.
Koops
,
R.
Weiel
,
D. P.
Kern
, and
T. H.
Baum
,
J. Vac. Sci. Technol. B
6
,
477
(
1988
).
23.
S. J.
Randolph
,
J. D.
Fowlkes
, and
P. D.
Rack
,
Crit. Rev. Solid State Mater. Sci.
31
,
55
(
2006
).
24.
Z. A. K.
Durran
,
M. E.
Jones
,
C.
Wang
,
M.
Scotuzzi
, and
C. W.
Hagen
,
Nanotechnology
28
,
474002
(
2017
).
25.
Kees
Landheer
,
Samantha G.
Rosenberg
,
Laurent
Bernau
,
Petra
Swiderek
,
Ivo
Utke
,
Cornelis W.
Hagen
, and
D.
Howard Fairbrother
,
J. Phys. Chem. C
115
,
17452
(
2011
).
26.
H.
Seiler
,
J. Appl. Phys.
54
,
R1
(
1983
).
27.
B.
Völkel
,
A.
Gölzhäuser
,
H. U.
Müller
,
C.
David
, and
M.
Grunze
,
J. Vac. Sci. Technol. B
15
,
2877
(
1997
).
28.
Yongda
Yan
,
Zhenjiang
Hu
,
Xueshen
Zhao
,
Tao
Sun
,
Shen
Dong
, and
Xiaodong
Li
,
SMALL
6
,
724
(
2010
).
29.
King Wai Chui
Lai
,
Ning
Xi
,
Carmen Kar Man
Fung
,
Jiangbo
Zhang
,
Hongzhi
Chen
,
Yilun
Luo
, and
Uchechukwu C
Wejinya
,
Int. J. Robot. Res.
28
,
523
(
2009
).
30.
Sebastien
Decossas
,
Frederic
Mazen
,
Thierry
Baron
,
Georges
Bremond
, and
Abdelkader
Souifi
,
Nanotechnology
14
,
1272
(
2003
).
You do not currently have access to this content.