The effects of proton irradiation energy on the electrical properties of SiNx/AlGaN/GaN metal-insulator semiconductor high electron mobility transistors (MISHEMTs) using in situ grown silicon nitride as the gate dielectric were studied. The SiNx/AlGaN/GaN MISHEMT devices were irradiated with protons at energies of 5, 10, or 15 MeV at a fixed fluence of 2.5 × 1014 cm−2. The largest amount of device degradation was shown in the samples irradiated with the lowest irradiation energy of 5 MeV. The DC saturation current was reduced by 10.4%, 3.2%, and 0.5% for MISHEMTs irradiated with proton energies of 5, 10, and 15 MeV, respectively. Device performance degradation was more pronounced in the irradiated samples under high-frequency operation. At a frequency of 100 kHz, the percent saturation drain current reduction at a gate voltage of 3 V was 40%, 19%, and 17% after proton irradiation at 5, 10, and 15 MeV, respectively. The carrier removal rates for the MISHEMT devices were in the range of 21–144 cm−1 for the proton irradiation energies studied. The measured DC degradation and carrier removal rates are lower than the values reported for AlGaN/GaN metal-gate high electron mobility transistor devices irradiated at similar conditions, which can be attributed to the SiNx insulating layer reducing the total damage on the AlGaN surface.

1.
X. L.
Wang
,
C. M.
Wang
,
G. X.
Hu
,
J. X.
Wang
,
T. S.
Chen
,
G.
Jiao
,
J. P.
Li
,
Y. P.
Zeng
, and
J. M.
Li
,
Solid-State Electron.
49
,
1387
(
2005
).
2.
Y.
Irokawa
 et al.,
Appl. Phys. Lett.
84
,
2919
(
2004
).
3.
S. J.
Pearton
,
F.
Ren
,
A. P.
Zhang
, and
K. P.
Lee
,
Mater. Sci. Eng. R Rep.
30
,
55
(
2000
).
4.
S. C.
Binari
,
K.
Ikossi
,
J. A.
Roussos
,
W.
Kruppa
,
Doewon
Park
,
H. B.
Dietrich
,
D. D.
Koleske
,
A. E.
Wickenden
, and
R. L.
Henry
,
IEEE Trans. Electron Devices
48
,
465
(
2001
).
5.
6.
S. R.
Messenger
,
E. A.
Burke
,
G. P.
Summers
,
M. A.
Xapsos
,
R. J.
Walters
,
E. M.
Jackson
, and
B. D.
Weaver
,
IEEE Trans. Nucl. Sci.
46
,
1595
(
1999
).
7.
G. H.
Kinchin
and
R. S.
Pease
,
Rep. Prog. Phys.
18
,
301
(
1955
).
8.
J. F.
Ziegler
and
J. P.
Biersack
,
Treatise Heavy-Ion Science
, edited by
D.A.
Bromley
(
Springer
,
Boston
,
MA
,
1985
), pp.
93
129
.
9.
D.
Braäunig
and
F.
Wulf
,
Radiat. Phys. Chem.
43
,
105
(
1994
).
10.
A.
Mimouni
,
T.
Fernández
,
J.
Rodriguez-Tellez
,
A.
Tazon
,
H.
Baudrand
, and
M.
Boussuis
,
Electr. Electron. Eng.
2
,
397
(
2013
).
11.
Y.-S.
Lin
,
Y.-W.
Lain
, and
S. S. H.
Hsu
,
IEEE Electron Device Lett.
31
,
102
(
2010
).
12.
G.
Meneghesso
,
F.
Rampazzo
,
P.
Kordos
,
G.
Verzellesi
, and
E.
Zanoni
,
IEEE Trans. Electron Devices
53
,
2932
(
2006
).
13.
G.
Meneghesso
,
G.
Verzellesi
,
F.
Danesin
,
F.
Rampazzo
,
F.
Zanon
,
A.
Tazzoli
,
M.
Meneghini
, and
E.
Zanoni
,
IEEE Trans. Device Mater. Reliab.
8
,
332
(
2008
).
14.
J. W.
Chung
,
J. C.
Roberts
,
E. L.
Piner
, and
T.
Palacios
,
IEEE Electron Device Lett.
29
,
1196
(
2008
).
15.
J.
Joh
and
J. A.
del Alamo
, “Mechanisms for electrical degradation of GaN high-electron mobility transistors,”
2006 International Electron Devices Meeting
,
San Francisco, CA
,
11-13 December 2006
, pp.
1
4
.
16.
J.-C.
Gerbedoen
,
A.
Soltani
,
M.
Mattalah
,
M.
Moreau
,
P.
Thevenin
, and
J.-C.
De Jaeger
,
Diam. Relat. Mater.
18
,
1039
(
2009
).
17.
S.
Yagi
,
M.
Shimizu
,
M.
Inada
,
Y.
Yamamoto
,
G.
Piao
,
H.
Okumura
,
Y.
Yano
,
N.
Akutsu
, and
H.
Ohashi
,
Solid-State Electron.
50
,
1057
(
2006
).
18.
A.
Endoh
,
Y.
Yamashita
,
N.
Hirose
,
K.
Hikosaka
,
T.
Matsui
,
S.
Hiyamizu
, and
T.
Mimura
,
Jpn. J. Appl. Phys.
45
,
3364
(
2006
).
19.
C.
Fares
,
F.
Ren
,
S. J.
Pearton
,
G.
Yang
,
J.
Kim
,
C.-F.
Lo
, and
J. W.
Johnson
,
J. Vac. Sci. Technol. B
36
,
11206
(
2018
).
20.
K.-Y. R.
Wong
 et al., “A next generation CMOS-compatible GaN-on-Si transistors for high efficiency energy systems,”
2015 IEEE International Electron Devices Meeting (IEDM)
,
Washington, DC
,
7-9 December 2015
(
IEEE
,
2015
), pp.
9.5.1
9.5.4
.
21.
Z. H.
Liu
,
G. I.
Ng
,
S.
Arulkumaran
,
Y. K. T.
Maung
,
K. L.
Teo
,
S. C.
Foo
, and
S.
Vicknesh
,
IEEE Electron Device Lett.
32
,
318
(
2011
).
22.
B. M.
Green
,
K. K.
Chu
,
E. M.
Chumbes
,
J. A.
Smart
,
J. R.
Shealy
, and
L. F.
Eastman
,
IEEE Electron Device Lett.
21
,
268
(
2000
).
23.
J.
Ma
,
X.
Lu
,
X.
Zhu
,
T.
Huang
,
H.
Jiang
,
P.
Xu
, and
K. M.
Lau
,
J. Cryst. Growth
414
,
237
(
2015
).
24.
K.
Cheng
,
S.
Degroote
,
M.
Leys
,
F.
Medjdoub
,
J.
Derluyn
,
B.
Sijmus
,
M.
Germain
, and
G.
Borghs
,
J. Cryst. Growth
315
,
204
(
2011
).
25.
X.
Hu
 et al.,
IEEE Trans. Nucl. Sci.
51
,
293
(
2004
).
26.
L.
Liu
 et al.,
J. Vac. Sci. Technol.
31
,
022201
(
2013
).
27.
Xinwen
Hu
 et al.,
IEEE Trans. Nucl. Sci.
50
,
1791
(
2003
).
28.
B.
Luo
 et al.,
J. Electron. Mater.
31
,
437
(
2002
).
29.
G.
Sonia
 et al.,
Solid-State Electron.
52
,
1011
(
2008
).
30.
H.-Y.
Kim
,
J.
Kim
,
S. P.
Yun
,
K. R.
Kim
,
T. J.
Anderson
,
F.
Ren
, and
S. J.
Pearton
,
J. Electrochem. Soc.
155
,
H513
(
2008
).
31.
S.
Ahn
 et al.,
J. Vac. Sci. Technol.
33
,
051208
(
2015
).
32.
S.
Ahn
,
B.-J.
Kim
,
Y.-H.
Lin
,
F.
Ren
,
S. J.
Pearton
,
G.
Yang
,
J.
Kim
, and
I. I.
Kravchenko
,
J. Vac. Sci. Technol.
34
,
051202
(
2016
).
33.
H.-Y.
Kim
,
J.
Kim
,
L.
Liu
,
C.-F.
Lo
,
F.
Ren
, and
S. J.
Pearton
,
J. Vac. Sci. Technol.
30
,
012202
(
2012
).
34.
C.-F.
Lo
 et al.,
J. Vac. Sci. Technol.
30
,
041206
(
2012
).
35.
C. F.
Lo
,
T. S.
Kang
,
L.
Liu
,
C. Y.
Chang
,
S. J.
Pearton
,
I. I.
Kravchenko
,
O.
Laboutin
,
J. W.
Johnson
, and
F.
Ren
,
Appl. Phys. Lett.
97
,
262116
(
2010
).
36.
T.-S.
Kang
,
F.
Ren
,
B. P.
Gila
,
S. J.
Pearton
,
E.
Patrick
,
D. J.
Cheney
,
M.
Law
, and
M.-L.
Zhang
,
J. Vac. Sci. Technol.
33
,
061202
(
2015
).
37.
C.
Claeys
and
E.
Simoen
,
Radiation Effects in Advanced Semiconductor Materials and Devices
(
Springer
,
Berlin
,
2002
).
38.
H.
Arora
,
D. S.
Rawal
, and
B. K.
Sehgal
,
Physics of Semiconductor Devices
, edited by Vinod Kumar Jain and Abhishek Verma (
Springer
,
Cham
,
2014
), pp.
91
93
.
39.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
6
,
S3034
(
2017
).
40.
L.
Liu
 et al.,
J. Vac. Sci. Technol.
29
,
060603
(
2011
).
You do not currently have access to this content.