Temperature dependence of photoinduced hydrogen production and simultaneous separation was examined in a bilayer membrane comprised by an anodized TiO2 nanotube array (TNA) and a palladium layer. This membrane was fabricated by transferring a TNA embedded in a titanium sheet onto an electroless-plated palladium film. Sacrificial water splitting with methanol was photocatalytically performed under ultraviolet (UV) irradiation and only generated hydrogen gas was concurrently separated with the Pd layer. The H2 production rate (rH2) with the membrane at various temperatures was evaluated by using a home-made characterization system. The measured rH2 showed larger values at higher temperature of the membrane and increased abruptly after several hours of UV irradiation. This inflection behavior appeared earlier at the higher temperature of the membrane, which can be related to the permeation and adsorption characteristics of hydrogen in the Pd layer.

1.
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
2.
M.
Kawai
,
T.
Kawai
,
S.
Naito
, and
K.
Tamaru
,
Chem. Phys. Lett.
110
,
58
(
1984
).
3.
T.
Takata
,
K.
Shinohara
,
A.
Tanaka
,
M.
Hara
,
J. N.
Kondo
, and
K.
Domen
,
J. Photochem. Photobiol., A
106
,
45
(
1997
).
4.
H.
Kato
,
K.
Asakura
, and
A.
Kudo
,
J. Am. Chem. Soc.
125
,
3082
(
2003
).
5.
K.
Maeda
and
K.
Domen
,
J. Phys. Chem. C
111
,
7851
(
2007
).
6.
G. L.
Chiarello
,
M. H.
Aguirre
, and
E.
Selli
,
J. Catal.
273
,
182
(
2010
).
7.
S. V.
Novikov
 et al,
J. Vac. Sci. Technol., B
28
,
C3B12
(
2010
).
8.
S.
Cao
and
J.
Yu
,
J. Phys. Chem. Lett.
5
,
2101
(
2014
).
9.
Y.
Wang
,
J.
Yu
,
W.
Xiao
, and
Q.
Li
,
J. Mater. Chem. A
2
,
3847
(
2014
).
10.
J.
Ran
,
J.
Zhang
,
J.
Yu
,
M.
Jaroniec
, and
S. Z.
Qiao
,
Chem. Soc. Rev.
43
,
7787
(
2014
).
11.
X.
Li
,
J.
Yu
,
J.
Low
,
Y.
Fang
,
J.
Xiao
, and
X.
Chen
,
J. Mater. Chem. A
3
,
2485
(
2015
).
12.
L.
Liu
,
Y.
Qi
,
W.
An
,
S.
Lin
,
Y.
Liang
, and
W.
Cui
,
Mater. Lett.
158
,
278
(
2015
).
13.
Y.
Guo
,
J.
Li
,
Y.
Yuan
,
L.
Li
,
M.
Zhang
,
C.
Zhou
, and
Z.
Lin
,
Angew. Chem. Int. Ed.
55
,
14693
(
2016
).
14.
W.
Xu
,
P.
Ye
,
J.
Iocozzia
,
H.
Zhang
, and
Z.
Lin
,
J. Mater. Chem. A
5
,
21669
(
2017
).
15.
J.
Ran
,
G.
Gao
,
F.-T.
Li
,
T.-Y.
Ma
,
A.
Du
, and
S.-Z.
Qiao
,
Nat. Commun.
8
,
13907
(
2017
).
16.
D.
Gong
,
C. A.
Grimes
,
O. K.
Varghese
,
W. C.
Hu
,
R. S.
Singh
,
Z.
Chen
, and
E. C.
Dickey
,
J. Mater. Res.
16
,
3331
(
2001
).
17.
Y. P.
He
,
Z. Y.
Zhang
, and
Y. P.
Zhao
,
J. Vac. Sci. Technol., B
26
,
1350
(
2008
).
18.
I.
Paramasivam
,
H.
Jha
,
N.
Liu
, and
P.
Schmuki
,
Small
8
,
3073
(
2012
).
19.
L.
Vayssieres
,
N.
Beermann
,
S.-E.
Lindquist
, and
A.
Hagfeldt
,
Chem. Mater.
13
,
233
(
2001
).
20.
A.
Kay
,
I.
Cesar
, and
M.
Grätzel
,
J. Am. Chem. Soc.
128
,
15714
(
2006
).
21.
R. V.
Gonçalves
 et al,
J. Phys. Chem. C
116
,
14022
(
2012
).
22.
J. M.
Macak
,
H.
Tsuchiya
, and
P.
Schmuki
,
Angew. Chem. Int. Ed.
44
,
2100
(
2005
).
23.
J. M.
Macak
,
H.
Tsuchiya
,
L.
Taveira
,
S.
Aldabergerova
, and
P.
Schmuki
,
Angew. Chem. Int. Ed.
44
,
7463
(
2005
).
24.
H. E.
Prakasam
,
K.
Shankar
,
M.
Paulose
,
O. K.
Varghese
, and
C. A.
Grimes
,
J. Phys. Chem. C
111
,
7235
(
2007
).
25.
N. K.
Allam
,
X. J.
Feng
, and
C. A.
Grimes
,
Chem. Mater.
20
,
6477
(
2008
).
26.
O. K.
Varghese
,
M.
Paulose
, and
C. A.
Grimes
,
Nat. Nanotechnol.
4
,
592
(
2009
).
27.
Y.-M.
Kang
,
C.-W.
Wang
,
J.-B.
Chen
,
L.-Q.
Wang
,
D.-S.
Li
,
W.-D.
Zhu
, and
F.
Zhou
,
J. Vac. Sci. Technol., B
30
,
041801
(
2012
).
28.
M.
Hattori
,
K.
Noda
,
T.
Nishi
,
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Appl. Phys. Lett.
102
,
043105
(
2013
).
29.
K.
Xie
,
M.
Guo
,
H.
Huang
, and
Y.
Liu
,
Corros. Sci.
88
,
66
(
2014
).
30.
T.
Ohta
,
H.
Masegi
, and
K.
Noda
,
Mater. Res. Bull.
99
,
367
(
2018
).
31.
C.
Das
,
P.
Roy
,
M.
Yang
,
H.
Jha
, and
P.
Schmuki
,
Nanoscale
3
,
3094
(
2011
).
32.
T. J.
LaTempa
,
X.
Feng
,
M.
Paulose
, and
C. A.
Grimes
,
J. Phys. Chem. C
113
,
16293
(
2009
).
33.
M.
Ye
,
J.
Gong
,
Y.
Lai
,
C.
Lin
, and
Z.
Lin
,
J. Am. Chem. Soc.
134
,
15720
(
2012
).
34.
S. K.
Mohapatra
,
S. E.
John
,
S.
Banerjee
, and
M.
Misra
,
Chem. Mater.
21
,
3048
(
2009
).
35.
C.-Y.
Lee
,
L.
Wang
,
Y.
Kado
,
M. S.
Killian
, and
P.
Schmuki
,
ChemSusChem
7
,
934
(
2014
).
36.
M.
Hattori
,
K.
Noda
, and
K.
Matsushige
,
Appl. Phys. Lett.
99
,
123107
(
2011
).
37.
M.
Hattori
and
K.
Noda
,
Appl. Surf. Sci.
357
,
214
(
2015
).
38.
V.
Jayaraman
,
Y. S.
Lin
,
M.
Pakala
, and
R. Y.
Lin
,
J. Membr. Sci.
99
,
89
(
1995
).
39.
L. S.
McLeod
,
F. L.
Degertekin
, and
A. G.
Fedorov
,
Appl. Phys. Lett.
90
,
261905
(
2007
).
40.
M.
Mukaida
,
N.
Takahashi
,
K.
Hisamatsu
,
M.
Ishitsuka
,
S.
Hara
,
H.
Suda
, and
K.
Haraya
,
J. Membr. Sci.
365
,
378
(
2010
).
41.
N.-L.
Wu
and
M.-S.
Lee
,
Int. J. Hydrogen Energy
29
,
1601
(
2004
).
42.
A. Y.
Ahmed
,
T. A.
Kandiel
,
I.
Ivanova
, and
D.
Bahnemann
,
Appl. Surf. Sci.
319
,
44
(
2014
).
43.
K.
Wenderich
and
G.
Mul
,
Chem. Rev.
116
,
14587
(
2016
).
44.
G. K.
Mor
,
O. K.
Varghese
,
M.
Paulose
,
N.
Mukherjee
, and
C. A.
Grimes
,
J. Mater. Res.
18
,
2588
(
2003
).
45.
S.
Yoriya
and
C. A.
Grimes
,
Langmuir
26
,
417
(
2010
).
46.
A. V.
Naumkin
,
A.
Kraut-Vass
,
S. W.
Gaarenstroom
, and
C. J.
Powell
, NIST Standard Reference Database 20, version 4.1,
2012
, http://srdata.nist.gov/xps/.
47.
H.
Frieske
and
E.
Wicke
,
Ber. Bunse-Ges. Phys. Chem.
77
,
48
(
1973
).
48.
G. L.
Chiarello
,
L.
Forni
, and
E.
Selli
,
Catal. Today
144
,
69
(
2009
).
You do not currently have access to this content.