The relatively new electrospray droplet impact method is based on electrospray at atmospheric pressure and has been successful in achieving efficient desorption/ionization of biological molecules, soft etching of polymers, and nonselective etching of metal oxides. However, the beam current and brightness of this method are not practical for surface analyses. To improve the performance of this method, the authors have developed a new droplet ion beam gun using an electrospray of aqueous solutions in a vacuum. This technique could be expected to be a high-intensity massive cluster ion beam and they evaluate the performance of the vacuum-type electrospray droplet ion (V-EDI) gun. In this study, V-EDI and gas cluster ion beam guns were installed in a time-of-flight analyzer to directly compare the relative secondary ion yields of several biomolecules produced by several cluster ion beams.

1.
D.
Weibel
,
S.
Wong
,
N.
Lockyer
,
P.
Blenkinsopp
,
R.
Hill
, and
J. C.
Vickerman
,
Anal. Chem.
75
,
1754
(
2003
).
2.
D.
Touboul
,
F.
Halgand
,
A.
Brunelle
,
R.
Kersting
,
E.
Tallarek
,
B.
Hagenhoff
, and
O.
Laprévote
,
Anal. Chem.
76
,
1550
(
2004
).
3.
F.
Kollmer
,
Appl. Surf. Sci.
231–232
,
153
(
2004
).
4.
N.
Winograd
,
Anal. Chem.
77
,
142A
(
2005
).
5.
N.
Sanada
,
A.
Yamamoto
,
R.
Oiwa
, and
Y.
Ohashi
,
Surf. Interface Anal.
36
,
280
(
2004
).
6.
J. F.
Mahoney
,
J.
Perel
,
S. A.
Martino
,
S.
Husain
, and
T. D.
Lee
,
Rapid Commun. Mass Spectrom.
5
,
441
(
1991
).
7.
J. F.
Mahoney
,
D. S.
Cornett
, and
T. D.
Lee
,
Rapid Commun. Mass Spectrom.
8
,
403
(
1994
).
8.
J.
Zhang
,
K.
Franzreb
, and
P.
Williams
,
Rapid Commun. Mass Spectrom.
28
,
2211
(
2014
).
9.
J.
Zhang
,
K.
Franzreb
,
S. A.
Aksyonov
, and
P.
Williams
,
Anal. Chem.
87
,
10779
(
2015
).
10.
Y.
Fujiwara
and
N.
Saito
,
Rapid Commun Mass Spectrom.
31
,
1859
(
2017
).
11.
A.
Tempez
 et al.,
Rapid Commun. Mass Spectrom.
18
,
371
(
2004
).
12.
M.
Baur
,
B.-J.
Lee
,
C. R.
Gebhardt
, and
M.
Dürr
,
Appl. Phys. Lett.
99
,
234103
(
2011
).
13.
B.-J.
Lee
,
M.
Baur
,
C. R.
Gebhardt
, and
M.
Dürr
,
Rapid Commun. Mass Spectrom.
27
,
1090
(
2013
).
14.
Z.
Takáts
,
J. M.
Wiseman
, and
R. G.
Cooks
,
J. Mass Spectrom.
40
,
1261
(
2005
).
15.
I.
Yamada
,
J.
Matsuo
,
N.
Toyoda
, and
A.
Kirkpatrick
,
Mater. Sci. Eng. R
34
,
231
(
2001
).
16.
S.
Ninomiya
,
K.
Ichiki
,
H.
Yamada
,
Y.
Nakata
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Rapid. Commun. Mass Spectrom.
23
,
1601
(
2009
).
17.
J. L. S.
Lee
,
S.
Ninomiya
,
J.
Matsuo
,
I. S.
Gilmore
,
M. P.
Seah
, and
A. G.
Shard
,
Anal. Chem.
82
,
98
(
2010
).
18.
T.
Miyayama
,
N.
Sanada
,
M.
Suzuki
,
J. S.
Hammond
,
S.-Q. D.
Si
, and
A.
Takahara
,
J. Vac. Sci. Technol., A
28
,
L1
(
2010
).
19.
S.
Sheraz née Rabbani
,
A.
Barber
,
J. S.
Fletcher
,
N. P.
Lockyer
, and
J. C.
Vickerman
,
Anal. Chem.
85
,
5654
(
2013
).
20.
S.
Sheraz née Rabbani
,
I. B.
Razo
,
T.
Kohn
,
N. P.
Lockyer
, and
J. C.
Vickerman
,
Anal. Chem.
87
,
2367
(
2015
).
21.
K.
Moritani
,
M.
Kanai
,
K.
Goto
,
I.
Ihara
,
N.
Inui
, and
K.
Mochiji
,
Nucl. Instrum. Methods Phys. Res., B
315
,
300
(
2013
).
22.
A.
Wucher
,
H.
Tian
, and
N.
Winograd
,
Rapid Commun. Mass Spectrom.
28
,
396
(
2014
).
23.
H.
Tian
,
A.
Wucher
, and
N.
Winograd
,
J. Am. Soc. Mass Spectrom.
27
,
285
(
2016
).
24.
K.
Hiraoka
,
D.
Asakawa
,
S.
Fujimaki
,
A.
Takamizawa
, and
K.
Mori
,
Eur. Phys. J. D
38
,
225
(
2006
).
25.
K.
Hiraoka
,
K.
Mori
, and
D.
Asakawa
,
J. Mass Spectrom.
41
,
894
(
2006
).
26.
Y.
Sakai
,
Y.
Iijima
,
D.
Asakawa
, and
K.
Hiraoka
,
Surf. Interface Anal.
42
,
658
(
2010
).
27.
K.
Hiraoka
,
Y.
Sakai
, and
Y.
Iijima
,
J. Vac. Sci. Technol., A
28
,
510
(
2010
).
28.
Y.
Sakai
,
S.
Ninomiya
, and
K.
Hiraoka
,
Surf. Interface Anal.
43
,
1605
(
2011
).
29.
Y.
Sakai
,
S.
Ninomiya
, and
K.
Hiraoka
,
Surf. Interface Anal.
44
,
938
(
2012
).
30.
Electrospray and MALDI Mass Spectrometry
, edited by
R. B.
Cole
(
Wiley
,
Hoboken, NJ
,
2010
).
31.
L.
Rayleigh
,
Philos. Mag. Ser. (Series 5)
14
,
184
(
1882
).
32.
S.
Ninomiya
,
L. C.
Chen
,
H.
Suzuki
,
Y.
Sakai
, and
K.
Hiraoka
,
Rapid Commun. Mass Spectrom.
26
,
863
(
2012
).
33.
S.
Ninomiya
,
L. C.
Chen
,
Y.
Sakai
,
H.
Suzuki
, and
K.
Hiraoka
,
Surf. Interface Anal.
45
,
126
(
2013
).
34.
S.
Ninomiya
,
Y.
Sakai
,
L. C.
Chen
, and
K.
Hiraoka
,
J. Surf. Anal.
20
,
171
(
2014
), see http://www.sasj.jp/JSA/CONTENTS/vol.20_3/econt20_3.html.
35.
S.
Ninomiya
,
L. C.
Chen
,
Y.
Sakai
, and
K.
Hiraoka
,
J. Vac. Sci. Technol., B
34
,
03H116
(
2016
).
36.
S.
Ninomiya
,
Y.
Sakai
,
R.
Watanabe
,
M.
Sogou
,
T.
Miyayama
,
D.
Sakai
,
K.
Watanabe
,
L. C.
Chen
, and
K.
Hiraoka
,
Rapid Commun. Mass Spectrom.
30
,
2279
(
2016
).
37.
T.
Seki
,
K.
Tsumura
,
T.
Aoki
,
J.
Matsuo
,
G. H.
Takaoka
, and
I.
Yamada
,
Mater. Res. Soc. Symp. Proc.
647
,
O9.4.1
(
2001
), see .
38.
K.
Moritani
,
S.
Houzumi
,
K.
Takeshima
,
N.
Toyoda
, and
K.
Mochiji
,
J. Phys. Chem. C
112
,
11357
(
2008
).
39.
See supplementary material at https://doi.org/10.1116/1.5019182 for summary for the number of impact marks in the given area and the calculated charge states of the droplets.

Supplementary Material

You do not currently have access to this content.