The electronic sputtering of indium under swift heavy ion bombardment is investigated using time of flight secondary ion mass spectrometry in combination with 157 nm laser postionization. Secondary ion and neutral mass spectra generated under the impact of 4.8 MeV/u 48Ca10+ ions are analyzed in order to determine the ionization probability of the emitted indium atoms, and the results are compared to those measured under nuclear sputtering conditions via bombardment by 5 keV Ar+ primary ions. The influence of surface contamination on the ionization probability is studied by comparing (1) a pristine surface covered by a native oxide layer, (2) a kilo-electron-volt sputter-cleaned surface, and (3) a controlled oxygen coverage established by dosing the precleaned surface with O2. It is found that the native oxide layer increases the ionization probability for both kilo-electron-volt and mega-electron-volt primary ions. In contrast, oxygen deposited on a sputter-cleaned surface results in the well-known matrix effect for kilo-electron-volt ions, but has no influence on the ionization probability for the mega-electron-volt ions. In the case of a thoroughly sputter-cleaned surface a four- to sevenfold higher ionization probability for indium atoms is found for 4.8 MeV/u 48Ca10+ as compared to 5 keV Ar+ bombardment.

1.
R.
Behrisch
 et al.,
Sputtering by Particle Bombardment Vols. I–IV
, edited by
R.
Behrisch
,
K.
Wittmaack
, and
W.
Eckstein
(
Springer
,
Berlin
, 1981;1983;1991;2007).
2.
H. M.
Urbassek
and
W. O.
Hofer
, in
Fundamental Processes in Sputtering of Atoms and Molecules (SPUT92)
, 43rd ed., edited by
P.
Sigmund
(
Det Kongelige Danske Videnskabernes Selskab
,
Copenhagen
,
1993
), p.
97
.
3.
Ion Beam Science: Solved and Unsolved Problems
, Matematisk-Fysiske Meddelelser 52, edited by
P.
Sigmund
(
Det Kongelige Danske Videnskabernes Selskab
,
Copenhagen
,
2006
).
4.
W.
Assmann
,
M.
Toulemonde
, and
C.
Trautmann
, in
Sputtering by Particle Bombardment
, edited by
R.
Behrisch
and
W.
Eckstein
(
Springer
,
Berlin
,
2007
), Vol.
110
, p.
401
.
5.
Z. E.
Switkowski
,
F. M.
Mann
,
D. W.
Kneff
,
R. W.
Ollerhead
, and
T. A.
Tombrello
,
Radiat. Eff. Defect Solids
29
,
65
(
1976
).
6.
Y. X.
Qiu
,
J. E.
Griffith
, and
T. A.
Tombrello
,
Nucl. Instrum. Methods, B
1
,
118
(
1984
).
7.
M.
Toulemonde
,
W.
Assmann
,
C.
Trautmann
, and
F.
Gruner
,
Phys. Rev. Lett.
88
,
057602
(
2002
).
8.
H. D.
Mieskes
,
W.
Assmann
,
F.
Gruner
,
H.
Kucal
,
Z. G.
Wang
, and
M.
Toulemonde
,
Phys. Rev. B
67
,
155414
(
2003
).
9.
M.
Toulemonde
,
W.
Assmann
,
C.
Trautmann
,
F.
Gruner
,
H. D.
Mieskes
,
H.
Kucal
, and
Z. G.
Wang
,
Nucl. Instrum. Methods, B
212
,
346
(
2003
).
10.
S. A.
Khan
,
A.
Tripathi
,
M.
Toulemonde
,
C.
Trautmann
, and
W.
Assmann
,
Nucl. Instrum. Methods, B
314
,
34
(
2013
).
11.
A.
Meftah
,
W.
Assmann
,
N.
Khalfaoui
,
J. P.
Stoquert
,
F.
Studer
,
M.
Toulemonde
,
C.
Trautmann
, and
K. O.
Voss
,
Nucl. Instrum. Methods, B
269
,
955
(
2011
).
12.
M.
Toulemonde
,
W.
Assmann
, and
C.
Trautmann
,
Nucl. Instrum. Methods, B
379
,
2
(
2016
).
13.
M.
Toulemonde
,
W.
Assmann
,
D.
Muller
, and
C.
Trautmann
,
Nucl. Instrum. Methods, B
406
,
501
(
2017
).
14.
M. R.
Weller
,
K. M.
Hubbard
,
R. A.
Weller
,
D. L.
Weathers
, and
T. A.
Tombrello
,
Nucl. Instrum. Methods, B
42
,
19
(
1989
).
15.
W.
Assmann
 et al.,
Nucl. Instrum. Methods, B
392
,
94
(
2017
).
16.
A.
L'Hoir
 et al.,
Nucl. Instrum. Methods, B
267
,
876
(
2009
).
17.
H.
Hijazi
 et al.,
Nucl. Instrum. Methods, B
269
,
1003
(
2011
).
18.
H.
Hijazi
,
L. S.
Farenzena
,
H.
Rothard
,
P.
Boduch
,
P. L.
Grande
, and
E. F.
da Silveira
,
Eur. Phys. J. D
63
,
391
(
2011
).
19.
H.
Hijazi
 et al.,
Eur. Phys. J. D
66
,
68
(
2012
).
20.
H.
Hijazi
,
T.
Langlinay
,
H.
Rothard
,
P.
Boduch
,
F.
Ropars
,
A.
Cassimi
,
L. S.
Farenzena
, and
E. F.
da Silveira
,
Eur. Phys. J. D
68
,
185
(
2014
).
21.
R.
Martinez
,
T.
Langlinay
,
P.
Boduch
,
A.
Cassimi
,
H.
Hijazi
,
F.
Ropars
,
P.
Salou
,
E. F.
da Silveira
, and
H.
Rothard
,
Mater. Res. Express
2
,
076403
(
2015
).
22.
C. C.
de Castro
,
I. S.
Bitensky
, and
E. F.
da Silveira
,
Nucl. Instrum. Methods, B
132
,
561
(
1997
).
23.
J. A. M.
Pereira
,
E. F.
Da Silveira
, and
K.
Wien
,
Radiat. Eff. Defect Solids
142
,
247
(
1997
).
24.
J. A. M.
Pereira
and
E. F.
da Silveira
,
Nucl. Instrum. Methods, B
155
,
206
(
1999
).
25.
J. A. M.
Pereira
,
I. S.
Bitensky
, and
E. F.
da Silveira
,
Nucl. Instrum. Methods, B
135
,
244
(
1998
).
26.
C. C.
de Castro
,
I. S.
Bitensky
,
E. F.
da Silveira
,
M.
Most
, and
K.
Wien
,
Int. J. Mass Spectrom.
173
,
1
(
1998
).
27.
J. A. M.
Pereira
,
I. S.
Bitensky
, and
E. F.
da Silveira
,
Int. J. Mass Spectrom.
174
,
179
(
1998
).
28.
J. A. M.
Pereira
and
E. F.
da Silveira
,
Nucl. Instrum. Methods, B
136
,
779
(
1998
).
29.
J. A. M.
Pereira
and
E. F.
da Silveira
,
Phys. Rev. Lett.
84
,
5904
(
2000
).
30.
F. A.
Fernandez-Lima
,
O. P.
VilelaNeto
,
A. S.
Pimentel
,
C. R.
Ponciano
,
M. A. C.
Pacheco
,
M. A. C.
Nascimento
, and
E. F d.
Silveira
,
J. Phys. Chem. A
113
,
1813
(
2009
).
31.
F.
Alberto Fernandez-Lima
,
O. P.
Vilela Neto
,
A.
Silva Pimentel
,
M. A. C.
Pacheco
,
C. R.
Ponciano
,
M. A. C.
Nascimento
, and
E. F.
da Silveira
,
J. Phys. Chem. A
113
,
15031
(
2009
).
32.
H.
Oechsner
and
E.
Stumpe
,
Appl. Phys.
14
,
43
(
1977
).
33.
D.
Lipinsky
,
R.
Jede
,
J.
Tümpner
,
O.
Ganschow
, and
A.
Benninghoven
,
J. Vac. Sci. Technol.
3
,
2035
(
1985
).
34.
A.
Wucher
, in
TOF-SIMS: Materials Analysis by Mass Spectrometry
, 2nd ed., edited by
J. C.
Vickerman
and
D.
Briggs
(
IM Publications/SurfaceSpectra
,
Chichester/Manchester
,
2013
), p.
217
.
35.
J. B.
Pallix
,
U.
Schuhle
,
C. H.
Becker
, and
D. L.
Huestis
,
Anal. Chem.
61
,
805
(
1989
).
36.
N. P.
Lockyer
and
J. C.
Vickerman
,
Laser Chem.
17
,
139
(
1997
).
37.
M.
Wahl
and
A.
Wucher
,
Nucl. Instrum. Methods, B
94
,
36
(
1994
).
38.
L. K.
Takahashi
,
J.
Zhou
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
,
J. Phys. Chem. A
113
,
4035
(
2009
).
39.
I. V.
Veryovkin
,
W. F.
Calaway
,
J. F.
Moore
,
M. J.
Pellin
,
J. W.
Lewellen
,
Y. L.
Li
,
S. V.
Milton
,
B. V.
King
, and
M.
Petravic
,
Appl. Surf. Sci.
231
,
962
(
2004
).
40.
L.
Hanley
,
P. D.
Edirisinghe
,
W. F.
Calaway
,
I. V.
Veryovkin
,
M. J.
Pellin
, and
J. F.
Moore
,
Appl. Surf. Sci.
252
,
6723
(
2006
).
41.
A.
Wucher
,
W.
Berthold
, and
H.
Oechsner
, in
Secondary Ion Mass Spectrometry (SIMS IX)
(
Wiley
,
Yokohama
,
1993
), p.
100
.
42.
A.
Wucher
,
R.
Heinrich
,
R. M.
Braun
,
K. F.
Willey
, and
N.
Winograd
,
Rapid Commun. Mass Spectrom.
12
,
1241
(
1998
).
43.
R.
Heinrich
and
A.
Wucher
,
Nucl. Instrum. Methods, B
140
,
27
(
1998
).
44.
R.
Heinrich
,
C.
Staudt
,
M.
Wahl
, and
A.
Wucher
, in
Secondary Ion Mass Spectrometry (SIMS XII)
(
Elsevier Science
,
Amsterdam
,
1999
), p.
111
.
45.
A.
Wucher
,
R.
Heinrich
, and
C.
Staudt
, in
Secondary Ion Mass Spectrometry (SIMS XII)
(
Elsevier Science
,
Amsterdam
,
1999
), p.
143
.
46.
C.
Staudt
,
R.
Heinrich
, and
A.
Wucher
,
Nucl. Instrum. Methods, B
164–165
,
677
(
2000
).
47.
C.
Staudt
and
A.
Wucher
,
Phys. Rev. B
66
,
075419
(
2002
).
48.
S.
Meyer
,
C.
Staudt
, and
A.
Wucher
,
Appl. Surf. Sci.
203–204
,
48
(
2003
).
49.
A. V.
Samartsev
and
A.
Wucher
,
Appl. Surf. Sci.
252
,
6474
(
2006
).
50.
P.
Mazarov
,
A. V.
Samartsev
, and
A.
Wucher
,
Appl. Surf. Sci.
252
,
6452
(
2006
).
51.
J.
München
,
D.
Lipinsky
, and
H. F.
Arlinghaus
,
Surf. Interface Anal.
45
,
117
(
2013
).
52.
53.
A.
Wucher
and
H.
Oechsner
,
Surf. Sci.
199
,
567
(
1988
).
54.
F.
Meinerzhagen
,
L.
Breuer
,
H.
Bukowska
,
M.
Bender
,
D.
Severin
,
M.
Herder
,
H.
Lebius
,
M.
Schleberger
, and
A.
Wucher
,
Rev. Sci. Instrum.
87
,
013903
(
2016
).
55.
A.
Wucher
,
M.
Wahl
, and
H.
Oechsner
,
Nucl. Instrum. Methods, B
82
,
337
(
1993
).
56.
Z.
Ma
,
W. F.
Calaway
,
M. J.
Pellin
, and
E. I.
von Nagy-Felsobuki
,
Nucl. Instrum. Methods, B
94
,
197
(
1994
).
57.
M. W.
Thompson
,
Philos. Mag.
18
,
377
(
1968
).
58.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods, B
268
,
1818
(
2010
).
59.
G.
Schiwietz
and
P. L.
Grande
,
Phys. Rev. A
84
,
052703
(
2011
).
60.
L.
Breuer
,
P.
Ernst
,
M.
Herder
,
F.
Meinerzhagen
,
M.
Bender
,
D.
Severin
, and
A.
Wucher
, “
Mass spectrometric investigation of material sputtered under swift heavy ion bombardment
,”
Nucl. Instrum. Methods, B
(published online).
61.
E. M.
Bringa
,
R. E.
Johnson
, and
M.
Jakas
,
Phys. Rev. B
60
,
15107
(
1999
).
62.
P.
Kucharczyk
,
A.
Füngerlings
,
A.
Wucher
, and
B.
Weidtmann
, “
Computer simulation of sputtering induced by swift heavy ions
,”
Nucl. Instrum. Methods, B
(submitted).
63.
A. V.
Samartsev
,
C.
Heuser
, and
A.
Wucher
,
Surf. Interface Anal.
45
,
87
(
2012
).
You do not currently have access to this content.