The authors explored an approach for nanostructuring of surfaces of chalcogenide glasses by direct soft nanoimprint lithography. The authors produced soft nanoimprint molds with microsized and nanosized relief features using polydimethylsiloxane. To enable the direct replication of the mold pattern on the surface of bulk chalcogenide glasses, the authors engineered a thermal imprint tool that prevents the substrate deformation using a physical confinement. The authors optimized the imprint process parameters to achieve an unprecedented full transfer micropattern onto a bulk chalcogenide glass. Furthermore, the authors explored pattern replication of nanosized structures by thermal imprint. This process paves the way for a facile and cost-effective fabrication of nanostructures on chalcogenide glasses and their numerous applications in optical and photonic devices.

1.
S. Y.
Chou
,
J. Vac. Sci. Technol. B
14
,
4129
(
1996
).
2.
W.
Zhang
and
S. Y.
Chou
,
Appl. Phys. Lett.
83
,
1632
(
2003
).
3.
J.
Seekamp
 et al,
Nanotechnology
13
,
581
(
2002
).
4.
A.
Boltasseva
,
J. Opt. A
11
,
114001
(
2009
).
5.
Y.
Yang
,
K.
Mielczarek
,
M.
Aryal
,
A.
Zakhidov
, and
W.
Hu
,
ACS Nano
6
,
2877
(
2012
).
6.
L. C.
Glangchai
,
M.
Caldorera-Moore
,
L.
Shi
, and
K.
Roy
,
J. Controlled Release
125
,
263
(
2008
).
7.
L. J.
Guo
,
Adv. Mater.
19
,
495
(
2007
).
8.
W.
Wu
 et al,
Nano Lett.
8
,
3865
(
2008
).
9.
J.-H.
Chang
,
F.-S.
Cheng
,
C.-C.
Chao
,
Y.-C.
Weng
,
S.-Y.
Yang
, and
L. A.
Wang
,
J. Vac. Sci. Technol., A
23
,
1687
(
2005
).
10.
J. H.
Shin
,
H. J.
Choi
,
G. T.
Kim
,
J. H.
Choi
, and
H.
Lee
,
Appl. Phys. Express
6
,
055001
(
2013
).
11.
S.
Xu
,
R.
Wang
,
Z.
Yang
,
L.
Wang
, and
L.
Barry
,
Chin. Phys. B
25
,
1
(
2016
).
12.
D. W.
Hewak
 et al, “
Chalcogenide glasses for photonics device applications
,” in
Photonic Glasses and Glass-Ceramics
, edited by
G. S.
Murugan
(
Research Signpost
,
Kerala
,
2010
), pp.
29
102
.
13.
T.
Han
,
S.
Madden
,
D.
Bulla
, and
B.
Luther-Davies
,
Opt. Express
18
,
19286
(
2010
).
14.
M.
Solmaz
,
H.
Park
,
C. K.
Madsen
, and
X.
Cheng
,
J. Vac. Sci. Technol., B
26
,
606
(
2008
).
15.
S.
Danto
,
E.
Koontz
,
Y.
Zou
,
T. O.
Ogbuu
,
B.
Gleason
,
P.
Wachtel
,
J. D.
Musgraves
,
J.
Hu
, and
K.
Richardson
,
Proc. SPIE
9884
,
88841T
(
2013
).
16.
D.
Henderson
and
D.
Ast
,
J. Non-Cryst. Solids
64
,
43
(
1984
).
17.
J.
Orava
,
T.
Kohoutek
,
L.
Greer
, and
H.
Fudouzi
,
Opt. Mat. Express
1
,
796
(
2011
).
18.
N.
Koo
,
M.
Bender
,
U.
Plachetka
,
A.
Fuchs
,
T.
Wahlbrink
,
J.
Bolten
, and
H.
Kurz
,
Microelectron. Eng.
84
,
904
(
2007
).
19.
I. D.
Johnston
,
J. Micromech. Microelectron. Eng.
24
,
035017
(
2014
).
20.
Y.
Zou
 et al,
Adv. Opt. Mater.
2
,
478
(
2014
).
21.
C.-H.
Chang
 et al,
J. Vac. Sci. Technol., B
21
,
2755
(
2003
).
22.
J.
Wang
,
S.
Schablitsky
,
Z.
Yu
,
W.
Wu
, and
S. Y.
Chou
,
J. Vac. Sci. Technol., B
17
,
2957
(
1999
).
23.
Q.
Chen
,
G.
Hubbard
,
P. A.
Shields
,
C.
Liu
,
D. W. E.
Allsopp
,
W. N.
Wang
, and
S.
Abbott
,
Appl. Phys. Lett.
94
,
263118
(
2009
).
24.
H.
Schmid
and
B.
Michel
,
Macromolecules
33
,
3042
(
2000
).
25.
T. W.
Odom
,
J. C.
Love
,
D. B.
Wolfe
,
K. E.
Paul
, and
G. M.
Whitesides
,
Langmuir
18
,
5314
(
2002
).
You do not currently have access to this content.