InAs1-xSbx is a unique semiconductor as it possesses the lowest bandgap (Eg) of the conventional III–V materials, yielding emission out to nearly 15 μm at room temperature. As such, it is well-suited as the absorber material in long-wavelength infrared (IR) applications such as chemical sensing and large format IR imaging. However, the compositions at the longest wavelengths are significantly lattice-mismatched to conventional substrates. Overcoming this lattice-mismatch requires using thick graded buffers, and to date, little work has focused on the effect of growth conditions on the Sb-incorporation or optical quality of the longest-wavelength InAs1-xSbx materials. Here, the authors investigate the molecular beam epitaxy (MBE) growth of this potential absorber material by using solid source MBE to grow InAs1-xSbx on step-graded buffers on GaSb substrates. The authors have achieved cap-layer compositions as high as x 0.55 under various substrate temperatures (Tsub) and V/III beam equivalent pressure ratios. By using InAs1-xSbx as the grading material as well as the cap material, the authors can measure Sb-content as a function of growth conditions over many compositions. The author's results show good agreement between x and Eg compared with previous reports, obtaining T =8 K photoluminescence (PL) emission approaching 11 μm. However, the authors also found that Sb-incorporation falls off for x >0.2 and worsens with increasing Tsub, suggesting that Sb-incorporation rates increase with reduced adatom mobility. Additionally, the PL of the samples show improved intensity when either Tsub or V/III were increased, while cross-sectional transmission electron microscopy revealed a significant decrease in threading dislocation density with increased V/III. Ultimately, the authors found that under the proper growth conditions, optically active InAs1-xSbx with x over 0.55 can be attained, and with an optimized grading structure, could be a low-cost alternative to HgCdTe for long-wavelength infrared optoelectronics.

1.
O.
Gauthier-Lafaye
,
P.
Boucaud
,
F. H.
Julien
,
S.
Sauvage
,
S.
Cabaret
,
J.-M.
Lourtioz
,
V.
Thierry-Mieg
, and
R.
Planel
,
Appl. Phys. Lett.
71
,
3619
(
1997
).
2.
S.
Bandara
,
P. G.
Maloney
,
N.
Baril
,
J. G.
Pellegrino
, and
M. Z.
Tidrow
,
Opt. Eng.
50
,
061015
(
2011
).
3.
P.
Klipstein
 et al.,
Proc. SPIE
8268
,
82680U
(
2012
).
4.
Y.
Lin
,
D.
Wang
,
D.
Donetsky
,
L.
Shterengas
,
G.
Kipshidze
,
G.
Belenky
,
S. P.
Svensson
,
W. L.
Sarney
, and
H. S.
Hier
,
J. Electron. Mater.
42
,
918
(
2013
).
5.
E. A.
Fitzgerald
,
Mater. Sci. Rep.
7
,
87
(
1991
).
6.
J.
Simon
,
S.
Tomasulo
,
P. J.
Simmonds
,
M.
Romero
, and
M. L.
Lee
,
J. Appl. Phys.
109
,
013708
(
2011
).
7.
E. A.
Fitzgerald
,
Y.-H.
Xie
,
D.
Monroe
,
P. J.
Silverman
,
J. M.
Kuo
,
A. R.
Kortan
,
F. A.
Thiel
, and
B. E.
Weir
,
J. Vac. Sci. Technol., B
10
,
1807
(
1992
).
8.
G.
Belenky
,
D.
Donetsky
,
G.
Kipshidze
,
D.
Wang
,
L.
Shterengas
,
W. L.
Sarney
, and
S. P.
Svensson
,
Appl. Phys. Lett.
99
,
141116
(
2011
).
9.
G.
Belenky
,
D.
Wang
,
Y.
Lin
,
D.
Donetsky
,
G.
Kipshidze
,
L.
Shterengas
,
D.
Westerfeld
,
W. L.
Sarney
, and
S. P.
Svensson
,
Appl. Phys. Lett.
102
,
111108
(
2013
).
10.
S. P.
Svensson
,
F. J.
Crowne
,
H. S.
Hier
,
W. L.
Sarney
,
W. A.
Beck
,
Y.
Lin
,
D.
Donetsky
,
S.
Suchalkin
, and
G.
Belenky
,
Semicond. Sci. Technol.
30
,
035018
(
2015
).
11.
W. L.
Sarney
,
S. P.
Svensson
,
Y.
Xu
,
D.
Donetsky
, and
G.
Belenky
,
J. Appl. Phys.
122
,
025705
(
2017
).
12.
S.
Tomasulo
,
J.
Simon
,
P. J.
Simmonds
,
J.
Biagiotti
, and
M. L.
Lee
,
J. Vac. Sci. Technol., B
29
,
03C118
(
2011
).
13.
B. W.
Liang
and
C. W.
Tu
,
J. Appl. Phys.
74
,
255
(
1993
).
14.
J. M.
Millunchick
,
E. M.
Anderson
,
C.
Pearson
,
W. L.
Sarney
, and
S. P.
Svensson
,
J. Appl. Phys.
114
,
234907
(
2013
).
15.
F.
Fuchs
,
A.
Lusson
,
J.
Wagner
, and
P.
Koidl
,
Proc. SPIE
1145
,
323
(
1989
).
16.
W. L.
Sarney
,
S. P.
Svensson
,
E. M.
Anderson
,
A. M.
Lundquist
,
C.
Pearson
, and
J. M.
Millunchick
,
J. Cryst. Growth
406
,
8
(
2014
).
17.
S. P.
Svensson
,
W. L.
Sarney
,
B. C.
Connelly
,
E. M.
Anderson
, and
J. M.
Millunchick
,
J. Cryst. Growth
425
,
234
(
2015
).
18.
S. P.
Svensson
,
W. L.
Sarney
,
D.
Donetsky
,
G.
Kipshidze
,
Y.
Lin
,
L.
Shterengas
,
Y.
Xu
, and
G.
Belenky
,
Appl. Opt.
56
,
B58
(
2017
).
19.
M. J.
Mori
and
E. A.
Fitzgerald
,
J. Appl. Phys.
105
,
013107
(
2009
).
20.
T. S.
Kuan
,
T. F.
Kuech
,
W. I.
Wang
, and
E. L.
Wilkie
,
Phys. Rev. Lett.
54
,
201
(
1985
).
21.
D.
Doppalapudi
,
S. N.
Basu
,
K. F.
Ludwig
, Jr
, and
T. D.
Moustakas
,
J. Appl. Phys.
84
,
1389
(
1998
).
22.
M. K.
Hudait
,
Y.
Lin
,
M. N.
Palmisiano
,
C.
Tivarus
,
J. P.
Pelz
, and
S. A.
Ringel
,
J. Appl. Phys.
95
,
3952
(
2004
).
23.
M. E.
Twigg
,
B. R.
Bennett
, and
R.
Magno
,
J. Cryst. Growth
191
,
651
(
1998
).
You do not currently have access to this content.