Additive manufacturing techniques using three dimensional (3D) printing have been shown to be suitable for a wide range of applications. In this study, stereolithography (SLA) is applied to the field of microfluidic fabrication of lab-on-a-chip (LOC) devices. LOCs deal with different milli/microsized channels and chambers, which are the key features of the devices, so an appropriate manufacturing process should provide high precision as well as high versatility. In this work, the goal was to overcome the common drawbacks of 3D printing and multistep processes, by implementing multiple polymeric materials in the same printing process. Using a customized SLA machine, a novel process was developed to print microfluidic channels enclosed between two poly(methyl methacrylate) layers in a sandwichlike structure. For microfluidic walls, two distinct commercial resins with different properties were used. Once thermal and pressure resistance of the obtained LOCs were assessed, deoxyribose nucleic acid was amplified by polymerase chain reaction inside the microfluidic chambers. Test results indicated favorable mechanical and thermal resistance, as well as chemical compatibility with the assay reagents. Such observations suggest that this novel approach can be applied to 3D printing of customized microfluidics with embedded features.

1.
M.
Vaezi
,
H.
Seitz
, and
S.
Yang
,
Int. J. Adv. Manuf. Technol.
67
,
1721
(
2013
).
2.
B.
Zhang
,
B.
Seong
,
V.
Nguyen
, and
D.
Byun
,
J. Micromech. Microeng.
26
,
25015
(
2016
).
3.
F.
Ning
,
W.
Cong
,
J.
Qiu
,
J.
Wei
, and
S.
Wang
,
Composites, Part B
80
,
369
(
2015
).
4.
H. N.
Chia
and
B. M.
Wu
,
J. Biol. Eng.
9
,
4
(
2015
).
5.
S.
Negi
,
S.
Dhiman
, and
R. K.
Sharma
,
Rapid Prototyping J.
20
,
256
(
2014
).
6.
Y. L.
Kong
 et al,
Nano Lett.
14
,
7017
(
2014
).
7.
K.
Willis
,
E.
Brockmeyer
,
S.
Hudson
, and
I.
Poupyrev
,
Proceedings of the 25th Annual ACM Symposium on User Interface Software Technology–UIST '12
(
2012
), pp.
589
598
.
8.
N.
Bhattacharjee
,
A.
Urrios
,
S.
Kang
, and
A.
Folch
,
Lab Chip
16
,
1720
(
2016
).
9.
C. M. B.
Ho
,
S. H.
Ng
,
K. H. H.
Li
, and
Y.-J.
Yoon
,
Lab Chip
15
,
3627
(
2015
).
10.
S. L.
Marasso
 et al,
Microelectron. Eng.
85
,
1326
(
2008
).
11.
D. A.
Boy
,
F.
Gibou
, and
S.
Pennathur
,
Lab Chip
8
,
1424
(
2008
).
12.
J.
Burmeister
,
V.
Bazilyanska
,
K.
Grothe
,
B.
Koehler
,
I.
Dorn
,
B. D.
Warner
, and
E.
Diessel
,
Anal. Bioanal. Chem.
379
,
391
(
2004
).
13.
H.
Becker
and
C.
Gärtner
,
Anal. Bioanal. Chem.
390
,
89
(
2008
).
14.
W.
Lee
,
D.
Kwon
,
B.
Chung
,
G. Y.
Jung
,
A.
Au
,
A.
Folch
, and
S.
Jeon
,
Anal. Chem.
86
,
6683
(
2014
).
15.
W.
Lee
,
D.
Kwon
,
W.
Choi
,
G. Y.
Jung
,
A. K.
Au
,
A.
Folch
, and
S.
Jeon
,
Sci. Rep.
5
,
7717
(
2015
).
16.
G.
Comina
,
A.
Suska
, and
D.
Filippini
,
Lab Chip
14
,
2978
(
2014
).
17.
O. H.
Paydar
,
C. N.
Paredes
,
Y.
Hwang
,
J.
Paz
,
N. B.
Shah
, and
R. N.
Candler
,
Sens. Actuators, A
205
,
199
(
2014
).
18.
J.
O'Connor
,
J.
Punch
,
N.
Jeffers
, and
J.
Stafford
,
J. Phys. Conf. Ser.
525
,
12009
(
2014
).
19.
S.
Waheed
,
J. M.
Cabot
,
N. P.
Macdonald
,
T.
Lewis
,
R. M.
Guijt
,
B.
Paull
, and
M. C.
Breadmore
,
Lab Chip
16
,
1993
(
2016
).
20.
J. G.
Zhou
,
D.
Herscovici
, and
C. C.
Chen
,
Int. J. Mach. Tools Manuf.
40
,
363
(
2000
).
21.
S. L.
Marasso
,
E.
Giuri
,
G.
Canavese
,
R.
Castagna
,
M.
Quaglio
,
I.
Ferrante
,
D.
Perrone
, and
M.
Cocuzza
,
Biomed. Microdev.
13
,
19
(
2011
).
22.
S. L.
Marasso
 et al,
Biomed. Microdev.
16
,
661
(
2014
).
23.
A.
Lamberti
,
S. L.
Marasso
, and
M.
Cocuzza
,
RSC Adv.
4
,
61415
(
2014
).
24.
G.
Tarabella
 et al,
Biochim. Biophys. Acta
1830
,
4374
(
2013
).
25.
Q.
Zhang
,
K.
Zhang
, and
G.
Hu
,
Sci. Rep.
6
,
22431
(
2016
).
26.
M.
Quaglio
,
S.
Bianco
,
R.
Castagna
,
M.
Cocuzza
, and
C. F.
Pirri
,
Microelectron. Eng.
88
,
1860
(
2011
).
27.
S. L.
Marasso
,
A.
Puliafito
,
D.
Mombello
,
S.
Benetto
,
L.
Primo
,
F.
Bussolino
,
C. F.
Pirri
, and
M.
Cocuzza
,
Microfluid. Nanofluid.
21
,
29
(
2017
).
28.
A.
Lamberti
,
A.
Virga
,
A.
Angelini
,
A.
Ricci
,
E.
Descrovi
,
M.
Cocuzza
, and
F.
Giorgis
,
RSC Adv.
5
,
4404
(
2015
).
29.
Q.
Chen
,
Q.
Chen
,
G.
Maccioni
,
A.
Sacco
,
S.
Ferrero
, and
L.
Scaltrito
,
Microelectron. Eng.
95
,
90
(
2012
).
30.
Q.
Chen
,
Q.
Chen
,
G.
Maccioni
,
A.
Sacco
,
L.
Scaltrito
,
M.
Ferraris
, and
S.
Ferrero
,
Microsyst. Technol.
17
,
1611
(
2011
).
31.
S. L.
Marasso
,
G.
Canavese
, and
M.
Cocuzza
,
Microelectron. Eng.
88
,
2322
(
2011
).
32.
C.
Ricciardi
 et al,
Food Bioprocess Technol.
3
,
956
(
2010
).
33.
D.
Balma
,
A.
Lamberti
,
S. L. L.
Marasso
,
D.
Perrone
,
M.
Quaglio
,
G.
Canavese
,
S.
Bianco
, and
M.
Cocuzza
,
Microelectron. Eng.
88
,
2208
(
2011
).
34.
A. K.
Au
,
W.
Lee
, and
A.
Folch
,
Lab Chip
14
,
1294
(
2014
).
35.
A. K.
Au
,
W.
Huynh
,
L. F.
Horowitz
, and
A.
Folch
,
Angew. Chem. Int. Ed.
55
,
3862
(
2016
).
36.
M.
Farsari
and
B. N.
Chichkov
,
Nat. Photonics
3
,
450
(
2009
).
37.
G. C.
Santini
,
C.
Potrich
,
L.
Lunelli
,
L.
Vanzetti
,
S. L.
Marasso
,
M.
Cocuzza
,
F. C.
Pirri
, and
C.
Pederzolli
,
Biophys. Chem.
229
,
142
(
2017
).
38.
L.
Pasquardini
 et al,
Lab Chip
11
,
4029
(
2011
).
39.
L.
Garibyan
and
N.
Avashia
,
J. Invest. Dermatol.
133
,
1
(
2013
).
40.
P. F.
Jacobs
, in Solid Free. Fabr. Proc. (1992), pp.
196
211
.
41.
G. C.
Eliades
,
G. J.
Vougiouklakis
, and
A. A.
Caputo
,
Dent. Mater.
3
,
19
(
1987
).
42.
C. I.
Rogers
,
K.
Qaderi
,
A. T.
Woolley
, and
G. P.
Nordin
,
Biomicrofluidics
9
,
016501
(
2015
).
43.
See supplementary material at https://doi.org/10.1116/1.5003203 for more details about material characterization, testing procedure and results.

Supplementary Material

You do not currently have access to this content.