Coatings of graphene nanoplatelets (GNPs) were deposited on a low density polyethylene (LDPE) substrate by a micromechanical method based on rubbing graphite platelets against the surface of the polymer. Transmission electron microscopy measurements reveal that the coatings were composed of nanoplatelets containing 13–30 graphene layers. Thermal gravimetric analysis shows that the investigated GNP coatings on LDPE (GNP/LDPE) samples are thermally stable up to 250 °C. Optical spectra of these samples, compared to those of pristine LDPE in the ultraviolet-visible-near-infrared range, indicate an increase in both reflectance and absorptance. On the other hand, the coating is able to markedly improve the surface conductivity of the polymeric substrate, indeed in the case of electrical contacts in the coplanar configuration (1 cm long and spaced 1 mm), the resistance of LDPE is 1015 Ω, while that of GNP/LDPE is 670 Ω. Electrical measurements under white light illumination point out a decrease in the conductance and a linear behavior of the photoconductance as a function of the optical power density. GNP/LDPE materials can be used for their optical, electrical, thermal, and flexibility properties in large area plastic electronics and optoelectronics.

1.
M.
Kaltenbrunner
 et al,
Nature
499
,
458
(
2013
).
2.
Y. L.
Loo
,
R. L.
Willett
,
K. W.
Baldwin
, and
J. A.
Rogers
,
Appl. Phys. Lett.
81
,
562
(
2002
).
3.
B.
Singh
and
N. S.
Sariciftci
,
Annu. Rev. Mater. Res.
36
,
199
(
2006
).
4.
R.
Balint
,
N. J.
Cassidy
, and
S. H.
Cartmell
,
Acta Biomater.
10
,
2341
(
2014
).
5.
J.
Wang
 et al,
J. Nanopart. Res.
13
,
869
(
2011
).
6.
N.
Garcia
,
P.
Esquinazi
,
J.
Barzola-Quiquia
, and
S.
Dusari
,
New J. Phys.
14
,
053015
(
2012
).
7.
G. D.
Liang
and
S. C.
Tjiong
,
Mater. Chem. Phys.
100
,
132
(
2006
).
8.
A. A.
Vasieleiou
,
M.
Kontopoulou
, and
A.
Docoslis
,
ACS Appl. Mater. Interfaces
6
,
1916
(
2014
).
9.
H.
Lei
 et al,
RSC Adv.
6
,
101492
(
2016
).
10.
11.
X.
Huang
,
T.
Leng
,
X.
Zhang
,
J. C.
Chen
,
K. H.
Chang
,
A. K.
Geim
,
K. S.
Novoselov
, and
Z.
Hu
,
Appl. Phys. Lett.
106
,
203105
(
2015
).
12.
U.
Coscia
,
M.
Palomba
,
G.
Ambrosone
,
G.
Barucca
,
M.
Cabibbo
,
P.
Mengucci
,
R.
de Asmundis
, and
G.
Carotenuto
,
Nanotechnology
28
,
194001
(
2017
).
13.
R. K.
De Castro
,
J. R.
Araujo
,
R.
Valaski
,
L. O. O.
Costa
,
B. S.
Archanjo
,
B.
Fragneaud
,
M.
Cremona
, and
C. A.
Achete
,
Chem. Eng. J.
273
,
509
(
2015
).
14.
H.
Sato
,
M.
Shimoyana
,
T.
Kamiya
,
T.
Amari
,
S.
Šašic
,
T.
Ninomiya
,
H. W.
Siesler
, and
Y.
Ozaki
,
J. Appl. Polym. Sci.
86
,
443
(
2002
).
15.
A. C.
Ferrari
and
D. M.
Basko
,
Nat. Nanotechnol.
8
,
235
(
2013
).
16.
A. C.
Ferrari
 et al,
Phys. Rev. Lett.
97
,
187401
(
2006
).
17.
A. C.
Ferrari
,
Solid State Commun.
143
,
47
(
2007
).
18.
E. H.
Martines Ferreira
,
M. V. O.
Moutinho
,
F.
Stavale
,
M. M.
Lucchese
,
R. B.
Capaz
,
C. A.
Achete
, and
A.
Jorio
,
Phys. Rev. B
82
,
125429
(
2010
).
19.
A.
Das
,
B.
Chakraborty
, and
A. K.
Sood
,
Bull. Mater. Sci.
31
,
579
(
2008
).
20.
E. A.
Taft
and
H. R.
Philipp
,
Phys. Rev.
138
,
A197
(
1965
).
21.
G. I.
Dovbeshko
,
V. R.
Romanyuk
,
D. V.
Pidgirnyi
,
V. V.
Cherepanov
,
E. O.
Andreev
,
V. M.
Levin
,
P. P.
Kuzhir
,
T.
Kaplas
, and
Y. P.
Svirko
,
Nanoscale Res. Lett.
10
,
234
(
2015
).
22.
W.
Kossack
,
P.
Papadopoulos
,
M.
Parkinson
,
F.
Prades
, and
F.
Kremer
,
Polymer
52
,
6061
(
2011
).
23.
M.
Palomba
,
M.
Salvatore
,
G.
Carotenuto
,
U.
Coscia
,
G.
Ambrosone
, and
S. De
Nicola
,
IEEE 15th International Conference on Nanotechnology (IEEE-NANO)
(
2015
), p.
485
.
24.
U.
Coscia
,
M.
Palomba
,
G.
Ambrosone
,
G.
Barucca
, and
G.
Carotenuto
,
18th Italian National Conference on Photonic Technologies
(
2016
).
25.
Y.
Shi
,
W.
Fang
,
K.
Zhang
,
W.
Zhang
, and
L. J.
Li
,
Small
5
,
2005
(
2009
).
26.
C.
Biswas
,
F.
Gunes
,
D. D.
Loc
,
S. C.
Lim
,
M. S.
Jeong
,
D.
Pribat
, and
Y. H.
Lee
,
Nano Lett.
11
,
4682
(
2011
).
You do not currently have access to this content.