The origin of frequency dispersion in postdeposition rapid thermal and furnace annealing treated Pt/Er2O3/Si/Pt, metal–insulator–semiconductor–metal (MISM) structure is systematically investigated. The cause of frequency dispersion in Pt/Er2O3/Si/Pt, MISM structure is attributed to the dielectric relaxation in high-κ Er2O3, after suppressing the extrinsic effects such as parasitic, lossy interfacial layer, surface roughness, polysilicon depletion, quantum confinement, and oxide tunneling. Further, the Havrilian–Negami law is used to model the frequency dispersion in postdeposition rapid thermal and furnace annealing treated Pt/Er2O3/Si/Pt, MISM structure up to 250 kHz. It is suggested that to obtain an accurate capacitance value, the dissipation factor must be minimum for the MISM structure with nanometer scale oxides/insulators. Additionally, a methodology is proposed for simple and efficient correction of measured capacitance from capacitance–voltage and capacitance–frequency characteristics. Moreover, the flatband voltage shift/hysteresis, frequency dependent border traps are estimated ∼0.45 V, ∼3.35 × 1012 traps/cm2 and ∼0.18 V, ∼1.84 × 1012 traps/cm2 for postdeposition rapid thermal and furnace annealing treated Pt/Er2O3/Si/Pt, MISM structures, respectively. Therefore, postdeposition furnace annealing treatment is superior to achieve high-quality high-κ Er2O3 (κ ∼16), with low frequency dispersion of ∼9% up to 250 kHz and minimal hysteresis (∼0.18 V) for next-generation complementary metal–oxide–semiconductor technology.

1.
International Technology Roadmap for Semiconductors (ITRS)
(
2013
), available at http://www.itrs2.net/2013-itrs.html.
2.
G.
He
,
L.
Zhu
,
Z.
Sun
,
Q.
Wan
, and
L.
Zhang
,
Prog. Mater. Sci.
56
,
475
(
2011
).
3.
J.
Robertson
,
Eur. Phys. J. Appl. Phys.
28
,
265
(
2004
).
4.
E. R.
Hsieh
,
Y. D.
Wang
,
S. S.
Chung
,
J. C.
Ke
,
C. W.
Yang
, and, and
S.
Hsu
,
IEEE Symposium on VLSI Technology, Honolulu
(
2016
), pp.
1
2
.
5.
T.
Nabatame
,
M.
Kimura
,
H.
Yamada
,
A.
Ohi
,
T.
Ohishi
, and
T.
Chikyow
,
Thin Solid Films
520
,
3387
(
2012
).
6.
C.
Zhao
,
C. Z.
Zhao
,
S.
Taylor
, and
P. R.
Chalker
,
Materials
7
,
5117
(
2014
).
7.
M. H.
Kryder
and
C. S.
Kim
,
IEEE Trans. Magn.
45
,
3406
(
2009
).
8.
D. K.
Sharma
,
R.
Khosla
, and
S. K.
Sharma
,
Solid State Electron.
111
,
42
(
2015
).
9.
R.
Khosla
,
D. K.
Sharma
,
K.
Mondal
, and
S. K.
Sharma
,
Appl. Phys. Lett.
105
,
152907
(
2014
).
10.
K.
Kita
and
A.
Toriumi
,
Appl. Phys. Lett.
94
,
132902
(
2009
).
11.
V.
Mikhelashvili
,
G.
Eisenstein
,
F.
Edelman
,
R.
Brener
,
N.
Zakharov
, and
P.
Werner
,
J. Appl. Phys.
95
,
613
(
2004
).
12.
N. R.
Aghamalyan
,
R. K.
Hovsepyan
,
E. A.
Kafadaryan
,
R. B.
Kostanyan
,
S. I.
Petrosyan
,
G. H.
Shirinyan
,
A. K.
Abduev
, and
A. S.
Asvarov
,
J. Contemp. Phys.
47
,
236
(
2012
).
13.
M.
Miritello
,
R.
Lo Savio
,
A. M.
Piro
,
G.
Franzò
,
F.
Priolo
,
F.
Iacona
, and
C.
Bongiorno
,
J. Appl. Phys.
100
,
13502
(
2006
).
14.
F.-H.
Chen
,
J.-L.
Her
,
Y.-H.
Shao
,
Y. H.
Matsuda
, and
T.-M.
Pan
,
Nanoscale Res. Lett.
8
,
18
(
2013
).
15.
X.
Wang
,
Y. L.
Zhu
,
M.
He
,
H. B.
Lu
, and
X. L.
Ma
,
Acta Mater.
59
,
1644
(
2011
).
16.
M. P.
Singh
,
C. S.
Thakur
,
K.
Shalini
,
N.
Bhat
, and
S. A.
Shivashankar
,
Appl. Phys. Lett.
83
,
2889
(
2003
).
17.
R.
Xu
,
Q.
Tao
,
Y.
Yang
, and
C. G.
Takoudis
,
Appl. Surf. Sci.
258
,
8514
(
2012
).
18.
R.
Khosla
,
P.
Kumar
, and
S. K.
Sharma
,
IEEE Trans. Device Mater. Reliab.
15
,
610
(
2015
).
19.
P.
Kumar
,
R.
Khosla
, and
S. K.
Sharma
,
Surf. Interfaces
4
,
69
(
2016
).
20.
E. K.
Liu
,
B. S.
Zhu
, and
J. S.
Luo
,
Semiconductor Physics
, 4th ed. (
National Defence Industry
,
Beijing
,
1999
).
21.
C. C.
Zhao
,
C. C.
Zhao
,
M.
Werner
,
S.
Taylor
, and
P.
Chalker
,
Nanoscale Res. Lett.
8
,
456
(
2013
).
22.
B.
Ricco
,
P.
Olivo
,
T. N.
Nguyen
,
T. S.
Kuan
, and
G.
Ferriani
,
IEEE Trans. Electron Devices
35
,
432
(
1988
).
23.
L. M.
Terman
,
Solid State Electron.
5
,
285
(
1962
).
24.
S. W.
Lee
,
IEEE Trans. Electron Devices
41
,
403
(
1994
).
25.
C. L.
Huang
,
J. V.
Faricelli
, and
N. D.
Arora
,
IEEE Trans. Electron Devices
40
,
1134
(
1993
).
26.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
2007
).
27.
C. Z.
Zhao
,
S.
Taylor
,
M.
Werner
,
P. R.
Chalker
,
R. T.
Murray
,
J. M.
Gaskell
, and
A. C.
Jones
,
J. Appl. Phys.
105
,
044102
(
2009
).
28.
C. Z.
Zhao
,
S.
Taylor
,
M.
Werner
,
P. R.
Chalker
,
J. M.
Gaskell
, and
A. C.
Jones
,
J. Vac. Sci. Technol., B
27
,
333
(
2009
).
29.
C. Z.
Zhao
,
M.
Werner
,
S.
Taylor
,
P. R.
Chalker
,
A. C.
Jones
, and
C.
Zhao
,
Nanoscale Res. Lett.
6
,
48
(
2010
).
30.
J.
Tao
,
C. Z.
Zhao
,
C.
Zhao
,
P.
Taechakumput
,
M.
Werner
,
S.
Taylor
, and
P. R.
Chalker
,
Materials
5
,
1005
(
2012
).
31.
C. Z. C.
Zhao
,
C. Z. C.
Zhao
,
M.
Werner
,
S.
Taylor
,
P.
Chalker
, and
P.
King
,
Nanoscale Res. Lett.
8
,
172
(
2013
).
32.
T.
Huang
,
K. M.
Wong
,
M.
Li
,
X.
Zhu
, and
K. M.
Lau
,
Phys. Status Solidi C
9
,
919
(
2012
).
33.
D. M.
Fleetwood
,
IEEE Trans. Nucl. Sci.
43
,
779
(
1996
).
34.
E. H.
Nicollian
and
J. R.
Brews
,
MOS Physics and Technology
(
Wiley
,
New York
,
2003
).
35.
W. H.
Wu
 et al.,
IEEE Electron Device Lett.
27
,
399
(
2006
).
36.
E. J.
Lerner
,
IBM J. Res. Dev.
4
,
6
(
1999
).
37.
K.
Ahmed
,
E.
Ibok
,
G. C. F.
Yeap
,
Q.
Xiang
,
B.
Ogle
,
J. J.
Wortman
, and
J. R.
Hauser
,
IEEE Trans. Electron Devices
46
,
1650
(
1999
).
38.
C.-H.
Choi
 et al.,
IEEE Electron Device Lett.
20
,
292
(
1999
).
39.
N. M.
Murari
,
R.
Thomas
,
S. P.
Pavunny
,
J. R.
Calzada
, and
R. S.
Katiyar
,
Appl. Phys. Lett.
94
,
142907
(
2009
).
40.
W. K.
Henson
,
K. Z.
Ahmed
,
E. M.
Vogel
,
J. R.
Hauser
,
J. J.
Wortman
,
R. D.
Venables
,
M.
Xu
, and
D.
Venables
,
IEEE Electron Device Lett
.
20
,
179
(
1999
).
41.
C. T.
Dervos
,
E.
Thirios
,
J.
Novacovich
,
P.
Vassiliou
, and
P.
Skafidas
,
Mater. Lett.
58
,
1502
(
2004
).
42.
H.
Choosuwan
,
R.
Guo
,
A. S.
Bhalla
, and
U.
Balachandran
,
J. Appl. Phys.
93
,
2876
(
2003
).
43.
B.
Lee
,
T.
Moon
,
T.
Kim
,
D.
Choi
,
B.
Park
,
B.
Lee
,
T.
Moon
, and
T.
Kim
,
Appl. Phys. Lett.
87
,
12901
(
2005
).
44.
Y.
Kim
,
J.
Oh
,
T. G.
Kim
, and
B.
Park
,
Appl. Phys. Lett.
78
,
2363
(
2001
).
45.
E. M.
Vogel
,
W. K.
Henson
,
C. A.
Richter
,
J. S.
Suehle
,
S.
Member
,
H.
Kirklen
,
C. A.
Richter
, and
J. S.
Suehle
,
IEEE Trans. Electron Devices
47
,
601
(
2000
).
46.
Y.
Lu
 et al.,
J. Vac. Sci. Technol., B
27
,
352
(
2009
).
47.
K. J.
Yang
and
C.
Hu
,
IEEE Trans. Electron Devices
46
,
1500
(
1999
).
48.
X.
Zhang
,
C.
Cheng
,
H.
Zhu
,
T.
Yu
,
D.
Zhang
, and
B.
Chen
,
IEEE Electron Device Lett.
37
,
1328
(
2016
).
49.
H. T.
Lue
,
C. Y.
Liu
, and
T. Y.
Tseng
,
IEEE Electron Device Lett.
23
,
553
(
2002
).
50.
E.
Verrelli
,
G.
Galanopoulos
,
I.
Zouboulis
, and
D.
Tsoukalas
,
Thin Solid Films
518
,
5579
(
2010
).
51.
T. M.
Briere
,
A. S.
Beddar
, and
M. T.
Gillin
,
Med. Phys.
32
,
3346
(
2005
).
52.
S.
Zeyrek
,
A.
Turan
, and
M. M.
Bülbül
,
Chin. Phys. Lett.
30
,
77306
(
2013
).
53.
K.
Iwamoto
 et al.,
Appl. Phys. Lett.
92
,
132907
(
2008
).
54.
D. W.
Davidson
and
R. H.
Cole
,
J. Chem. Phys.
19
,
1484
(
1951
).
55.
S. Z.
Li
,
C. L.
Gan
,
H.
Cai
,
C. L.
Yuan
,
J.
Guo
,
P. S.
Lee
, and
J.
Ma
,
Appl. Phys. Lett.
90
,
263106
(
2007
).
You do not currently have access to this content.