Radio-frequency (RF) hydrogen plasma treatment, thermal annealing in a furnace, and rapid thermal annealing of high-dose P+ ion implanted p-type Ge layers have been studied by Raman scattering spectroscopy, atomic force microscopy, secondary ion mass spectrometry, electrochemical capacitance–voltage profiling, four-point probes method, and x-ray reflectometry. It was shown that low-temperature RF plasma treatment at temperature about 200 °C resulted in full recrystallization of amorphous Ge layer implanted by P+ ions and activation of implanted impurity up to 6.5 × 1019 cm−3 with a maximum concentration at the depth of about 20 nm. Rapid thermal annealing (15 s) and thermal annealing (10 min) in nitrogen ambient required considerably higher temperatures for the recrystallization and activation processes that resulted in diffusion of implanted impurity inside the Ge bulk. It was demonstrated that RF plasma treatment from the samples with front (implanted) side resulted in considerable stronger effects of recrystallization and activation as compared with the same treatment from the back (unimplanted) side. The experiment shows that nonthermal processes play an important role in enhanced recrystallization and dopant activation during the RF plasma treatment. Mechanisms of enhanced modification of the subsurface implanted Ge layer under plasma treatment are analyzed.

1.
A. N.
Nazarov
,
V. S.
Lysenko
, and
T. M.
Nazarova
,
Semicond. Phys. Quantum Electron. Optoelectron.
11
,
101
(
2008
).
2.
V. S.
Lysenko
,
A. N.
Nazarov
,
S. A.
Valiev
,
I. M.
Zaritskii
,
T. E.
Rudenko
, and
A. S.
Tkachenko
,
Phys. Status Solidi A
113
,
653
(
1989
).
3.
A. N.
Nazarov
,
V. S.
Lysenko
,
S. A.
Valiev
,
M. M.
Lokshin
,
A. S.
Tkachenko
, and
I. A.
Kunitskii
,
Phys. Status Solidi A
120
,
447
(
1990
).
4.
M. Ya.
Valakh
,
V. S.
Lysenko
,
A. N.
Nazarov
,
G. Yu.
Rudko
,
A. S.
Tkachenko
, and
N. I.
Shakhraychuk
,
Res. Nucl. Instrum. Methods Phys., B
44
,
146
(
1989
).
5.
V. V.
Artamonov
,
V. S.
Lysenko
,
A. N.
Nazarov
,
V. V.
Strelchuk
,
M. Ya.
Valakh
, and
I. M.
Zaritskii
,
Semicond. Sci. Technol.
6
,
1
(
1991
).
6.
C.
Claeys
and
E.
Simoen
,
Germanium-Based Technologies: From Materials to Device
(
Elsevier
,
Oxford, Amsterdam
,
2007
).
7.
P. N.
Okholin
 et al,
Mater. Sci. Semicond. Process.
42
,
204
(
2016
).
8.
A. N.
Nazarov
,
V. I.
Kilchytska
,
I. P.
Barchuk
,
A. S.
Tkachenko
, and
S.
Ashok
,
J. Vac. Sci. Technol., B
18
,
1254
(
2000
).
9.
A.
Sanson
,
E.
Napolitani
,
G.
Impellizzeri
,
M.
Giarola
,
D.
De Salvador
,
V.
Privitera
,
F.
Priolo
,
G.
Mariotto
, and
A.
Carnera
,
Thin Solid Films
541
,
76
(
2013
).
10.
A.
Sanson
,
M.
Giarola
,
E.
Napolitani
,
G.
Impellizzeri
,
V.
Privitera
,
A.
Carneraa
, and
G.
Mariotto
,
J. Raman Spectrosc.
44
,
665
(
2013
).
11.
N.
Fukata
,
K.
Sato
,
M.
Mitome
,
Y.
Bando
,
T.
Sekiguchi
,
M.
Kirkham
,
J.
Hong
,
Z. L.
Wang
, and
R. L.
Snyder
,
ASC Nano
4
,
3807
(
2010
).
12.
H. C.
Mogul
,
A. J.
Steckl
,
G.
Webster
,
M.
Pawlik
, and
S.
Novak
,
Appl. Phys. Lett.
61
,
554
(
1992
).
13.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
Wiley
,
Hoboken, NJ
,
2006
), p.
781
.
14.
S. A.
Veldhuis
,
P.
Brinks
,
T. M.
Stawski
,
O. F.
Gobel
, and
J. E.
ten Elshof
,
J. Sol-Gel Sci. Technol.
71
,
118
(
2014
).
15.
H.
Richter
,
Z. P.
Wang
, and
L.
Ley
,
Solid State Commun.
39
,
625
(
1981
).
16.
A.
Perez-Rodrıguez
,
A.
Romano-Rodrıguez
,
R.
Cabezas
,
J. R.
Morante
,
T.
Jawhari
, and
C. E.
Hunt
,
J. Appl. Phys.
80
,
5736
(
1996
).
17.
D. B.
Cuttriss
,
Bell Syst. Tech. J.
40
,
509
(
1961
).
18.
S. K.
Sahari
,
H.
Murakami
,
T.
Fujioka
,
T.
Bando
,
A.
Ohta
,
K.
Makihara
,
S.
Higashi
, and
S.
Miyazak
,
Jpn. J. Appl. Phys.
50
,
04DA12
(
2011
).
19.
A. N.
Nazarov
,
V. M.
Pinchuk
,
T. V.
Yanchuk
,
V. S.
Lysenko
,
Ya. N.
Vovk
,
S.
Rangan
,
S.
Ashok
,
V.
Kudoyarova
, and
E. I.
Terukov
,
Int. J. Hydrogen Energy
26
,
521
(
2001
).
20.
A. N.
Nazarov
,
V. M.
Pinchuk
,
T. V.
Yanchuk
,
V. S.
Lysenko
, and
S.
Ashok
,
Phys. Rev. B
58
,
3522
(
1998
).
21.
M.
Stavola
,
Proceedings of the 5th International Symposium on Advanced Science and Technology of Silicon Materials
,
Kona, Hawaii
(
2008
), p.
337
.
22.
S. J.
Pearton
,
J. W.
Corbett
, and
M.
Stavola
,
Hydrogen in Crystalline Semiconductors
(
Springer-Verlag
,
Heidelberg
,
1992
).
23.
E.
Mosconi
,
D.
Meggiolaro
,
H.
Snaith
,
S. D.
Stranks
, and
F.
De Angelis
,
Energy Environ. Sci.
9
,
3180
(
2016
).
24.
L. G.
Parrat
,
Phys. Rev.
95
,
359
(
1954
).
25.
J. S.
Pedersen
and
I. W.
Hamley
,
J. Appl. Cryst.
27
,
36
(
1994
).
You do not currently have access to this content.