In this study, the authors demonstrate the strain induced piezoelectric charge effect on carrier confinement at the Al0.3Ga0.7N/GaN heterointerface with varying passivation (Si3N4) thicknesses. The graded Al0.2Ga0.8N/Al0.1Ga0.9N buffer on the Si (111) substrate grown by plasma assisted molecular beam epitaxy reduces the dislocation density of the GaN layer, which significantly improves the carrier concentration at the Al0.3Ga0.7N/GaN interface. The carrier confinement as well as the two-dimensional electron gas (2DEG) density with varying passivation thicknesses has been investigated through high resolution x-ray diffraction (HRXRD) followed by strain analysis and capacitance–voltage (C-V) measurements. As per the HRXRD strain analysis, the 2DEG density was predicted to increase about 5%, 7.9%, and 10% after Si3N4 passivation of 20, 30, and 40 nm, respectively. This enhancement in carrier density (2DEGs) was then validated by C-V characteristics for the same Si3N4 variation. After passivation, the induced tensile strain on the Al0.3Ga0.7N barrier along with surface state reduction at the interface of Si3N4/Al0.3Ga0.7N effectively improves the carrier confinement at the Al0.3Ga0.7N/GaN interface.

1.
A.
Able
,
W.
Wegscheider
,
K.
Engl
, and
J.
Zweck
,
J. Cryst. Growth
276
,
415
(
2005
).
2.
L.
Liu
and
J. H.
Edgar
,
Mater. Sci. Eng. R
37
,
61
(
2002
).
3.
T.
Li
,
M.
Mastro
, and
A.
Dadgar
,
III–V Compound Semiconductors: Integration with Silicon Based Microelectronics
(
CRC
,
Boca Raton
,
2010
).
4.
A.
Krost
and
A.
Dadgar
,
Acta Phys. Pol., A
102
,
555
(
2002
).
5.
A.
Dadgar
 et al.,
J. Cryst. Growth
248
,
556
(
2003
).
6.
A.
Watanabe
,
T.
Takeuchi
,
K.
Hirosawa
,
H.
Amano
,
K.
Hiramatsu
, and
I.
Akasaki
,
J. Cryst. Growth
128
,
391
(
1993
).
7.
K.
Cheng
 et al.,
J. Electron. Mater.
35
,
592
(
2006
).
8.
Y.
Yang
 et al.,
J. Cryst. Growth
376
,
23
(
2013
).
9.
S.
Iwakami
,
M.
Yanagihara
,
O.
Machida
,
E.
Chino
,
N.
Kaneko
,
H.
Goto
, and
K.
Ohtsuka
,
Jpn. J. Appl. Phys., Part 2
43
,
L831
(
2004
).
10.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
56
,
R10024
(
1997
).
11.
O.
Ambacher
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
W. J.
Schaff
, and
L. F.
Eastman
,
J. Appl. Phys.
85
,
3222
(
1999
).
12.
L.
Shenghui
,
D.
Jiangfeng
,
L.
Qian
,
Y.
Qi
,
Z.
Wei
,
X.
Jianxin
, and
Y.
Mohua
,
J. Semicond.
31
,
094004
(
2010
).
13.
R. A.
Beach
and
T. C.
McGill
,
J. Vac. Sci. Technol., B
17
,
1753
(
1999
).
14.
S.
Baskaran
,
A.
Mohanbabu
,
N.
Anbuselvan
,
N.
Mohankumar
,
D.
Godwinraj
, and
C. K.
Sarkar
,
Superlattices Microstruct.
64
,
470
(
2013
).
15.
S.
Ghosh
,
A.
Bag
,
S. K.
Jana
,
P.
Mukhopadhyay
,
S. M.
Dinara
,
S.
Kabi
, and
D.
Biswas
,
Solid-State Electron.
96
,
1
(
2014
).
16.
P. S.
Park
and
S.
Rajan
,
IEEE Trans. Electron Devices
58
,
704
(
2011
).
17.
I. R.
Gatabi
,
D. W.
Johnson
,
J. H.
Woo
,
J. W.
Anderson
,
M. R.
Coan
,
E. L.
Piner
, and
H. R.
Harris
,
IEEE Trans. Electron Devices
60
,
1082
(
2013
).
18.
H.
Kambayashi
,
Y.
Satoh
,
S.
Ootomo
,
T.
Kokawa
,
T.
Nomura
,
S.
Kato
, and
T. P.
Chow
,
Solid-State Electron.
54
,
660
(
2010
).
19.
C.
Mizue
,
Y.
Hori
,
M.
Miczek
, and
T.
Hashizume
,
Jpn. J. Appl. Phys., Part 1
50
,
021001
(
2011
).
20.
C.
Liu
,
E. F.
Chor
, and
L. S.
Tan
,
Appl. Phys. Lett.
88
,
173504
(
2006
).
21.
J.
Derluyn
 et al.,
J. Appl. Phys.
98
,
054501
(
2005
).
22.
S.
Abermann
,
G.
Pozzovivo
,
J.
Kuzmik
,
G.
Strasser
,
D.
Pogany
,
J.-F.
Carlin
,
N.
Grandjean
, and
E.
Bertagnolli
,
Semicond. Sci. Technol.
22
,
1272
(
2007
).
23.
W.
Wang
,
J.
Derluyn
,
M.
Germain
,
M.
Leys
,
S.
Degroote
,
D.
Schreurs
, and
G.
Borghs
,
Jpn. J. Appl. Phys., Part 2
45
,
L224
(
2006
).
24.
T. R.
Prunty
,
J. A.
Smart
,
E. M.
Chumbes
,
B. K.
Ridley
,
L. F.
Eastman
, and
J. R.
Shealy
,
Proceedings of the IEEE/Cornell Conference on High Performance Devices
(
2000
).
25.
M.
Higashiwaki
,
Z.
Chen
,
R.
Chu
,
Y.
Pei
,
S.
Keller
,
U. K.
Mishra
,
N.
Hirose
,
T.
Matsui
, and
T.
Mimura
,
Appl. Phys. Lett.
94
,
053513
(
2009
).
26.
S.
Arulkumaran
,
T.
Egawa
,
H.
Ishikawa
,
T.
Jimbo
, and
Y.
Sano
,
Appl. Phys. Lett.
84
,
613
(
2004
).
27.
B. M.
Green
,
K. K.
Chu
,
E. M.
Chumbes
,
J. A.
Smart
,
J. R.
Shealy
, and
L. F.
Eastman
,
IEEE Electron Device Lett.
21
,
268
(
2000
).
28.
X.
Hu
,
A.
Koudymov
,
G.
Simin
,
J.
Yang
,
M. A.
Khan
,
A.
Tarakji
,
M. S.
Shur
, and
R.
Gaska
,
Appl. Phys. Lett.
79
,
2832
(
2001
).
29.
C. M.
Jeon
and
J.
Lee
,
Appl. Phys. Lett.
86
,
172101
(
2005
).
30.
S. K.
Jana
,
P.
Mukhopadhyay
,
S.
Ghosh
,
S.
Kabi
,
A.
Bag
,
R.
Kumar
, and
D.
Biswas
,
J. Appl. Phys.
115
,
174507
(
2014
).
31.
M.
Laügt
and
V.
Bousquet
,
J. Phys. D: Appl. Phys.
32
,
A32
(
1999
).
32.
S.
Çörekçi
,
M. K.
Öztürk
,
H.
Yu
,
M.
Çakmak
,
S.
Özçelik
, and
E.
Özbay
,
Semiconductors
47
,
820
(
2013
).
33.
E. T.
Yu
,
G. J.
Sullivan
,
P. M.
Asbeck
,
C. D.
Wang
,
D.
Qiao
, and
S. S.
Lau
,
Appl. Phys. Lett.
71
,
2794
(
1997
).
34.
H.
Morkoc
,
Handbook of Nitride Semiconductors, Devices
(
Wiley
,
Weinheim
,
2008
).
35.
P.
Gangwani
,
S.
Pandey
,
S.
Haldar
,
M.
Gupta
, and
R. S.
Gupta
,
Solid-State Electron.
51
,
130
(
2007
).
36.
M.
Grundmann
, 1D Schrödinger - Poisson solver BandEng (http://my.ece.ucsb.edu/mgrundmann/bandeng).
37.
S. M.
Dinara
,
S. Kr.
Jana
,
S.
Ghosh
,
P.
Mukhopadhyay
,
R.
Kumar
,
A.
Chakraborty
,
S.
Bhattacharya
, and
D.
Biswas
,
AIP Adv.
5
,
047136
(
2015
).
You do not currently have access to this content.