A nanoporous carbon monolith structure has been developed for use as a scaffold for silicon anodes for lithium batteries. This scaffold was fabricated by coating vertically aligned carbon nanotubes in a highly conformal coating of nanocrystalline carbon, applied via atmospheric pressure chemical vapor deposition. The coating increases the mechanical stability of the nanotube structure, which provides electrically conductive pathways through the anode. Silicon anodes were fabricated with the monoliths by low pressure chemical vapor infiltration of silicon. This platform allows the carbon and silicon volume fractions to be independently varied in the anode. Anodes with a low silicon content (less than 5% by volume) showed high stability in cycling against lithium with a capacity retention of 89.7% between cycles 2 and 185. Anodes with a high silicon content (∼25% by volume) showed poor capacity retention when the carbon content was low (<40% by volume), and transmission electron microscopy analysis indicated that the anodes failed due to the destruction of the nanocrystalline carbon coating during cycling. However, by increasing the carbon content to ∼60% volume percent in the monolith, capacity retention was substantially stabilized even for anodes with very high silicon loadings. These stabilized electrodes exhibited volumetric capacities as high as ∼1000 mA h/ml and retained over 725 mA h/ml by cycle 100.
Skip Nav Destination
Article navigation
July 2017
Research Article|
June 29 2017
Carbon monolith scaffolding for high volumetric capacity silicon Li-ion battery anodes
Lawrence K. Barrett;
Lawrence K. Barrett
Department of Physics and Astronomy, Brigham Young University
, N283 ESC, Provo, Utah 84602
Search for other works by this author on:
Juichin Fan;
Juichin Fan
Department of Chemical Engineering, Brigham Young University
, Clyde Building, Room 350, Provo, Utah 84602
Search for other works by this author on:
Kevin Laughlin;
Kevin Laughlin
Department of Physics and Astronomy, Brigham Young University
, N283 ESC, Provo, Utah 84602
Search for other works by this author on:
Sterling Baird;
Sterling Baird
Department of Physics and Astronomy, Brigham Young University
, N283 ESC, Provo, Utah 84602
Search for other works by this author on:
John N. Harb;
John N. Harb
Department of Chemical Engineering, Brigham Young University
, Clyde Building, Room 350, Provo, Utah 84602
Search for other works by this author on:
Richard R. Vanfleet;
Richard R. Vanfleet
Department of Physics and Astronomy, Brigham Young University
, N283 ESC, Provo, Utah 84602
Search for other works by this author on:
Robert C. Davis
Robert C. Davis
a)
Department of Physics and Astronomy, Brigham Young University
, N283 ESC, Provo, Utah 84602
Search for other works by this author on:
a)
Electronic mail: davis@byu.edu
J. Vac. Sci. Technol. B 35, 041802 (2017)
Article history
Received:
January 20 2017
Accepted:
May 15 2017
Citation
Lawrence K. Barrett, Juichin Fan, Kevin Laughlin, Sterling Baird, John N. Harb, Richard R. Vanfleet, Robert C. Davis; Carbon monolith scaffolding for high volumetric capacity silicon Li-ion battery anodes. J. Vac. Sci. Technol. B 1 July 2017; 35 (4): 041802. https://doi.org/10.1116/1.4984807
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Novel low-temperature and high-flux hydrogen plasma source for extreme-ultraviolet lithography applications
A. S. Stodolna, T. W. Mechielsen, et al.
High-efficiency metalenses for zone-plate-array lithography
Henry I. Smith, Mark Mondol, et al.