A nanoporous carbon monolith structure has been developed for use as a scaffold for silicon anodes for lithium batteries. This scaffold was fabricated by coating vertically aligned carbon nanotubes in a highly conformal coating of nanocrystalline carbon, applied via atmospheric pressure chemical vapor deposition. The coating increases the mechanical stability of the nanotube structure, which provides electrically conductive pathways through the anode. Silicon anodes were fabricated with the monoliths by low pressure chemical vapor infiltration of silicon. This platform allows the carbon and silicon volume fractions to be independently varied in the anode. Anodes with a low silicon content (less than 5% by volume) showed high stability in cycling against lithium with a capacity retention of 89.7% between cycles 2 and 185. Anodes with a high silicon content (∼25% by volume) showed poor capacity retention when the carbon content was low (<40% by volume), and transmission electron microscopy analysis indicated that the anodes failed due to the destruction of the nanocrystalline carbon coating during cycling. However, by increasing the carbon content to ∼60% volume percent in the monolith, capacity retention was substantially stabilized even for anodes with very high silicon loadings. These stabilized electrodes exhibited volumetric capacities as high as ∼1000 mA h/ml and retained over 725 mA h/ml by cycle 100.

1.
U.
Kasavajjula
,
C.
Wang
, and
A. J.
Appleby
,
J. Power Sources
163
,
1003
(
2007
).
2.
L.
Baggetto
,
R. A. H.
Niessen
,
F.
Roozeboom
, and
P. H. L.
Notten
,
Adv. Funct. Mater.
18
,
1057
(
2008
).
3.
H.
Wu
and
Y.
Cui
,
Nano Today
7
,
414
(
2012
).
4.
H.
Jung
,
M.
Park
,
S. H.
Han
,
H.
Lim
, and
S.-K.
Joo
,
Solid State Commun.
125
,
387
(
2003
).
5.
W.-R.
Liu
,
Z.-Z.
Guo
,
W.-S.
Young
,
D.-T.
Shieh
,
H.-C.
Wu
,
M.-H.
Yang
, and
N.-L.
Wu
,
J. Power Sources
140
,
139
(
2005
).
6.
Y.
Yao
,
M. T.
McDowell
,
I.
Ryu
,
H.
Wu
,
N.
Liu
,
L.
Hu
,
W. D.
Nix
, and
Y.
Cui
,
Nano Lett.
11
,
2949
(
2011
).
7.
C. K.
Chan
,
H.
Peng
,
G.
Liu
,
K.
McIlwrath
,
X. F.
Zhang
,
R. A.
Huggins
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
31
(
2008
).
8.
Q.
Zhang
,
W.
Zhang
,
W.
Wan
,
Y.
Cui
, and
E.
Wang
,
Nano Lett.
10
,
3243
(
2010
).
9.
L.-F.
Cui
,
R.
Rufflo
,
C. K.
Chan
,
H.
Peng
, and
Y.
Cui
,
Nano Lett.
9
,
491
(
2009
).
10.
P. N. K.
Wei Wang
,
ACS Nano
4
,
2233
(
2010
).
11.
W.
Wang
,
R.
Epur
, and
P. N.
Kumta
,
Electrochem. Commun.
13
,
429
(
2011
).
12.
A.
Gohier
,
B.
Laik
,
K. H.
Kim
,
J. L.
Maurice
,
J. P.
Pereira-Ramos
,
C. S.
Cojocaru
, and
P.
Van Tran
,
Adv. Mater.
24
,
2592
(
2012
).
13.
K.
Evanoff
,
J.
Khan
,
A. A.
Balandin
,
A.
Magasinski
,
W. J.
Ready
,
T. F.
Fuller
, and
G.
Yushin
,
Adv. Mater.
24
,
533
(
2012
).
14.
X.
Wang
,
L.
Sun
,
R. A.
Susantyoko
, and
Q.
Zhang
,
Carbon
98
,
504
(
2016
).
15.
Y.
Fan
,
Q.
Zhang
,
C. X.
Lu
,
Q. Z.
Xiao
,
X. H.
Wang
, and
B. K.
Tay
,
Nanoscale
5
,
1503
(
2013
).
16.
J.
Fan
,
L. K.
Barrett
,
R. C.
Davis
,
R. R.
Vanfleet
, and
J. N.
Harb
,
J. Electrochem. Soc.
164
,
A848
(
2017
).
17.
X.
Chen
,
K.
Gerasopoulos
,
J.
Guo
,
A.
Brown
,
C.
Wang
,
R.
Ghodssi
, and
J. N.
Culver
,
ACS Nano
4
,
5366
(
2010
).
18.
T.
Hiraoka
 et al,
Adv. Funct. Mater.
20
,
422
(
2010
).
19.
L.-F.
Cui
,
Y. Y.
Yang
,
C.-M.
Hsu
, and
Y.
Cui
,
Nano Lett.
9
,
3370
(
2009
).
20.
S.-H.
Ng
,
J.
Wang
,
D.
Wexler
,
K.
Konstantinov
,
Z.-P.
Guo
, and
H.-K.
Liu
,
Angew. Chem. Int. Ed.
45
,
6896
(
2006
).
21.
N.
Liu
,
Z.
Lu
,
J.
Zhao
,
M. T.
McDowell
,
H.-W.
Lee
,
W.
Zhao
, and
Y.
Cui
,
Nat. Nanotechnol.
9
,
187
(
2014
).
22.
L.
Chen
,
K.
Wang
,
X.
Xie
, and
J.
Xie
,
J. Power Sources
174
,
538
(
2007
).
23.
S.
Dalavi
,
P.
Guduru
, and
B. L.
Lucht
,
J. Electrochem. Soc.
159
,
A642
(
2012
).
24.
Z.
Lu
,
N.
Liu
,
H.-W.
Lee
,
J.
Zhao
,
W.
Li
,
Y.
Li
, and
Y.
Cui
,
ACS Nano
9
,
2540
(
2015
).
25.
Q.
Zhang
,
J.-Q.
Huang
,
M.-Q.
Zhao
,
W.-Z.
Qian
, and
F.
Wei
,
ChemSusChem
4
,
864
(
2011
).
26.
M. F. L.
De Volder
,
S. H.
Tawfick
,
R. H.
Baughman
, and
A. J.
Hart
,
Science
339
,
535
(
2013
).
27.
C.-F.
Sun
 et al,
ACS Nano
7
,
2717
(
2013
).
28.
D. S.
Jensen
,
S. S.
Kanyal
,
V.
Gupta
,
M. A.
Vail
,
A. E.
Dadson
,
M.
Engelhard
,
R.
Vanfleet
,
R. C.
Davis
, and
M. R.
Linford
,
J. Chromatogr. A
1257
,
195
(
2012
).
29.
D. N.
Hutchison
,
N. B.
Morrill
,
Q.
Aten
,
B. W.
Turner
,
B. D.
Jensen
,
L. L.
Howell
,
R. R.
Vanfleet
, and
R. C.
Davis
,
J. Microelectromech. Syst.
19
,
75
(
2010
).
30.
See supplementary material at http://dx.doi.org/10.1116/1.4984807 for TEM analysis of nanocrystalline carbon coating (supplementary Fig. 1) and additional data on capacity jumps at high superficial current density (supplementary Figs. 2–4).
31.
D.
Aurbach
,
E.
Zinigrad
,
Y.
Cohen
, and
H.
Teller
,
Solid State Ionics
148
,
405
(
2002
).
32.
L. B.
Hu
,
H.
Wu
,
Y. F.
Gao
,
A. Y.
Cao
,
H. B.
Li
,
J.
McDough
,
X.
Xie
,
M.
Zhou
, and
Y.
Cui
,
Adv. Energy Mater.
1
,
523
(
2011
).
33.
P.
Limthongkul
,
Y.-I.
Jang
,
N. J.
Dudney
, and
Y.-M.
Chiang
,
J. Power Sources
119–121
,
604
(
2003
).

Supplementary Material

You do not currently have access to this content.