Field emitter arrays of silicon carbide based nanopillars with high emitter density were fabricated by using a combination of nanosphere lithography and inductively coupled plasma reactive ion etching techniques. The electron field emission characteristics of the produced nanopillars with two different aspect ratios and geometries were investigated, and the obtained results were compared with each other. The authors found that unlike the samples containing low aspect ratio SiC nanopillars with blunt tip apex, the samples comprising high aspect ratio nanopillars with sharp tip apex generate greater emission currents under lower electric fields. The nanopillars with sharp tip apex produced field emission currents up to 240 μA/cm2 under 17.4 V/μm applied electric field, while the nanopillars with blunt tip apex produced an emission current of 70 μA/cm2. The electric fields required to obtain 10 μA/cm2 current density are found to be 9.1 and 7.2 V/μm for the nanopillars with blunt and sharp tip apex, respectively. Time dependent stability measurements yielded stable electron emission without any abrupt change in the respective current levels of both samples.

1.
S.
Uemura
,
J.
Yotani
,
T.
Nagasako
,
H.
Kurachi
,
H.
Yamada
,
T.
Ezaki
,
T.
Maesoba
, and
T.
Nakao
,
Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp.
33
,
1132
(
2002
).
2.
C.
Langer
,
C.
Prommesberger
, and
R.
Schreiner
, in
2016 29th International Vacuum Nanoelectronics Conference
(
IEEE
,
Vancouver, BC
,
2016
), pp.
6
7
.
3.
S.
Wilfert
and
C.
Edelmann
,
Vacuum
86
,
556
(
2012
).
4.
W.
Knapp
,
D.
Schleussner
, and
M.
Wüest
,
J. Phys. Conf. Ser.
100
,
092007
(
2008
).
5.
S.
Lam
,
14th International Vac. Microelectron. Conf.
(
IEEE
,
Davis, CA
,
2001
), pp.
135
136
.
6.
H.
Nakahara
,
S.
Ichikawa
,
T.
Ochiai
,
Y.
Kusano
, and
Y.
Saito
,
e-J. Surf. Sci. Nanotechnol.
9
,
400
(
2011
).
7.
M.
Mehregany
,
C. A.
Zorman
,
N.
Rajan
, and
C. H.
Wu
,
Proc. IEEE
86
,
1594
(
1998
).
8.
R. G.
Azevedo
 et al,
IEEE Sens. J.
7
,
568
(
2007
).
9.
D. G.
Senesky
,
B.
Jamshidi
, and
A. P.
Pisano
,
IEEE Sens. J.
9
,
1472
(
2009
).
10.
G.
Shen
,
Y.
Bando
,
C.
Ye
,
B.
Liu
, and
D.
Golberg
,
Nanotechnology
17
,
3468
(
2006
).
11.
W. M.
Zhou
,
Y. J.
Wu
,
E. S. W.
Kong
,
F.
Zhu
,
Z. Y.
Hou
, and
Y. F.
Zhang
,
Appl. Surf. Sci.
253
,
2056
(
2006
).
12.
M. G.
Kang
,
H.
Lezec
,
R. L.
Kallaher
, and
F.
Sharifi
,
Proc. IEEE Conf. Nanotechnol.
65201
,
2
(
2012
).
13.
X.
Zhang
,
Y.
Chen
,
Z.
Xie
, and
W.
Yang
,
J. Phys. Chem. C
114
,
8251
(
2010
).
14.
S. S.
Shinde
and
S.
Park
,
J. Semicond.
36
,
23001
(
2015
).
15.
16.
D.
Mihalcea
and
P.
Piot
,
14th Conference On Linear Accelerator
(
TRIUMF
,
Victoria, BC
,
2008
), pp.
652
654
.
17.
S.
Podenok
,
M.
Sveningsson
,
K.
Hansen
, and
E. E. B.
Campbell
,
Nano
1
,
87
(
2006
).
18.
R. G.
Forbes
,
C.
Edgcombe
, and
U.
Valdrè
,
Ultramicroscopy
95
,
57
(
2003
).
19.
C.
Langer
,
C.
Prommesberger
,
F.
Dams
, and
R.
Schreiner
,
i25th International Vacuum Nanoelectronics Conference
(
IEEE
,
Jeju
,
2012
), pp.
1
2
.
20.
J.-M.
Bonard
,
N.
Weiss
,
H.
Kind
,
T.
Stöckli
,
L.
Forró
,
K.
Kern
, and
A.
Châtelain
,
Adv. Mater.
13
,
184
(
2001
).
21.
X.
Wang
,
J.
Zhou
,
C.
Lao
,
J.
Song
,
N.
Xu
, and
Z. L.
Wang
,
Adv. Mater.
19
,
1627
(
2007
).
22.
J. O.
Hwang
,
D. H.
Lee
,
J. Y.
Kim
,
T. H.
Han
,
B. H.
Kim
,
M.
Park
,
K.
No
, and
S. O.
Kim
,
J. Mater. Chem.
21
,
3432
(
2011
).
23.
V. A.
Gubanov
and
C. Y.
Fong
,
Appl. Phys. Lett.
75
,
88
(
1999
).
24.
S.
Chen
,
M.
Shang
,
Z.
Yang
,
J.
Zheng
,
L.
Wang
,
Q.
Liu
,
F.
Gao
, and
W.
Yang
,
J. Mater. Chem. C
4
,
7391
(
2016
).
25.
H.-Y.
Hsieh
,
S.-H.
Huang
,
K.-F.
Liao
,
S.-K.
Su
,
C.-H.
Lai
, and
L.-J.
Chen
,
Nanotechnology
18
,
505305
(
2007
).
26.
W.
Wang
and
Z.
Li
,
OALib
, arXiv:1211.4197,
6
(
2012
).
27.
G. S.
Oehrlein
,
Mater. Sci. Eng. B
4
,
441
(
1989
).
28.
Y. M.
Chang
,
M. C.
Liu
,
P. H.
Kao
,
C. M.
Lin
,
H. Y.
Lee
, and
J. Y.
Juang
,
ACS Appl. Mater. Interfaces
4
,
1411
(
2012
).
You do not currently have access to this content.