Acrylic resists are used for both electron beam lithography and for deep-ultraviolet (UV) lithography at 193 nm wavelength. Polymethyl methacrylate (PMMA) is the most widely used acrylic positive tone electron beam resist. While it offers superb resolution in this role, its dry etch resistance is quite poor. Here, the authors present a new technique for enhancing the dry etch resistance of PMMA. This involves adding Irgacure 651—a photo-cross-linking agent to PMMA. Irgacure-containing PMMA can be spin-coated onto substrates in exactly the same way as pure PMMA. Addition of Irgacure does not impair the chain scissioning properties of PMMA under electron beam irradiation. Electron beam lithography can be carried out with this resist in exactly the same manner as with pure PMMA, although at a higher dose. After electron beam exposure, the exposed sample can be developed in diluted methyl isobutyl ketone solvent, again just as with pure PMMA. A postlithography UV exposure step then cross-links the patterned resist; substantially enhancing its dry etch resistance. This technique enables the fabrication of deeper etched structures than is possible with PMMA alone.

1.
F.
Rahman
,
Nanostructures in Electronics and Photonics
(
Pan Stanford
,
Singapore
,
2008
).
2.
L. F.
Thompson
and
R. E.
Kerwin
,
Annu. Rev. Mater. Sci.
6
,
267
(
1976
).
3.
O.
Dial
,
C. C.
Cheng
, and
A.
Scherer
,
J. Vac. Sci. Technol., B
16
,
3887
(
1998
).
4.
H.
Duan
,
D.
Winston
,
J. K. W.
Yang
,
B. M.
Cord
,
V. R.
Manfrinato
, and
K. K.
Berggren
,
J. Vac. Sci. Technol., B
28
,
C6C58
(
2010
).
5.
L. F.
Thompson
,
E. D.
Feit
,
M. J.
Bowden
,
P. V.
Lenzo
, and
E. G.
Spencer
,
J. Electrochem. Soc.
121
,
1500
(
1974
).
6.
D. C.
Flanders
,
Appl. Phys. Lett.
36
,
93
(
1980
).
7.
K.
Nozaki
and
E.
Yano
,
Fujitsu Sci. Tech. J.
38
,
3
(
2002
), available at https://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol38-1/paper02.pdf.
8.
S. C.
Fu
,
K. H.
Hsieh
, and
L. A.
Wang
,
J. Polym. Res.
6
,
99
(
1999
).
9.
D. J.
Carbaugh
,
J. T.
Wright
,
R.
Parthiban
,
S.
Kaya
, and
F.
Rahman
,
J. Vac. Sci. Technol., B
34
,
041609
(
2016
).
10.
D. J.
Carbaugh
,
J. T.
Wright
,
R.
Parthiban
,
S.
Kaya
, and
F.
Rahman
,
Thin Solid Films
615
,
423
(
2016
).
11.
D. J.
Carbaugh
,
J. T.
Wright
,
R.
Parthiban
, and
F.
Rahman
,
Semicond. Sci. Technol.
31
,
025010
(
2016
).
12.
D. J.
Carbaugh
,
S.
Kaya
, and
F.
Rahman
,
J. Vac. Sci. Technol., B
35
,
011601
(
2017
).
13.
R.
Steingrüber
and
M.
Ferstl
,
Microelectron. Eng.
53
,
539
(
2000
).
14.
R.
Steingrüber
,
M.
Ferstl
, and
W.
Pilz
,
Microelectron. Eng.
57–58
,
285
(
2001
).
15.
Y.
Chen
,
Microelectron. Eng.
135
,
57
(
2015
).
16.
R. F. W.
Pease
,
Contemp. Phys.
22
,
265
(
1981
).
17.
A. E.
Grigorescu
and
C. W.
Hagen
,
Nanotechnology
20
,
292001
(
2009
).
18.
J.
Vila-Comamala
,
S.
Gorelick
,
V. A.
Guzenko
, and
C.
David
,
J. Vac. Sci. Technol., B
29
,
06F301
(
2011
).
19.
A. E.
Grigorescu
,
M. C.
van der Krogt
,
C. W.
Hagen
, and
P.
Kruit
,
Microelectron. Eng.
84
,
822
(
2007
).
20.
H.
Yang
,
A.
Jin
,
Q.
Luo
,
J.
Li
,
C.
Gu
, and
Z.
Cui
,
Microelectron. Eng.
85
,
814
(
2008
).
21.
M.
Khoury
and
D. K.
Ferry
,
J. Vac. Sci. Technol., B
14
,
75
(
1996
).
22.
E. A.
Dobisz
,
S. L.
Brandow
,
R.
Bass
, and
J.
Mitterender
,
J. Vac. Sci. Technol., B
18
,
107
(
2000
).
23.
C. C.
Anderson
and
F.
Rodriguez
,
J. Vac. Sci. Technol., B
3
,
347
(
1985
).
24.
L. A.
Pederson
,
J. Electrochem. Soc.
129
,
205
(
1982
).
25.
H.
Gokan
,
S.
Esho
, and
Y.
Ohnishi
,
J. Electrochem. Soc.
130
,
143
(
1983
).
26.
R. R.
Kunz
,
S. C.
Palmateer
,
A. R.
Forte
,
R. D.
Allen
,
G. M.
Wallraff
,
R. A.
DiPietro
, and
D. C.
Hofer
,
Proc. SPIE
2724
,
365
(
1995
).
27.
P. M.
Dentinger
and
J. W.
Taylor
,
J. Vac. Sci. Technol., B
15
,
2575
(
1997
).
28.
J. H.
Park
,
S. H.
Lee
,
K. H.
Choi
,
H. S.
Noh
,
J. W.
Lee
, and
S. J.
Pearton
,
Thin Solid Films
518
,
6465
(
2010
).
29.
Y.
Saotome
,
H.
Gokan
,
K.
Saigo
,
M.
Suzuki
, and
Y.
Ohnishi
,
J. Electrochem. Soc.
132
,
909
(
1985
).
30.
F.
Watanabe
and
Y.
Ohnishi
,
J. Vac. Sci. Technol., B
4
,
422
(
1986
).
31.
R. L.
Bruce
,
T.
Lin
,
R. J.
Phaneuf
,
G. S.
Oehrlein
,
W.
Bell
,
B.
Long
, and
C. G.
Willson
,
J. Vac. Sci. Technol., B
28
,
751
(
2010
).
32.
E.
Zanchetta
,
G. D.
Giustina
,
G.
Grenci
,
A.
Pozzato
,
M.
Tormen
, and
G.
Brusatin
,
Adv. Mater.
25
,
6261
(
2013
).
33.
G.
Grenci
,
E.
Zanchetta
,
A.
Pozzato
,
G. D.
Giustina
,
G.
Brusatin
, and
M.
Tormen
,
Appl. Mater. Today
1
,
13
(
2015
).
34.
J. O.
Choi
,
J. A.
Moore
,
J. C.
Corelli
,
J. P.
Silverman
, and
H.
Bakhru
,
J. Vac. Sci. Technol., B
6
,
2286
(
1988
).
35.
J. R.
Woodworth
,
M. E.
Riley
,
V. A.
Arnatucci
,
T. W.
Hamilton
, and
B. P.
Aragon
,
J. Vac. Sci. Technol., A
19
,
45
(
2001
).
36.
J. F.
Rabek
,
Mechanisms of Photophysical Processes and Photochemical Reactions in Polymers: Theory and Applications
(
Wiley
,
Chichester, NY
,
1987
).
37.
J. F.
Rabek
,
Photodegradation of Polymers: Physical Characteristics and Applications
(
Springer
,
New York
,
1996
).
38.
C.
Zhang
,
C.
Yang
, and
D.
Ding
,
Appl. Surf. Sci.
227
,
139
(
2004
).
39.
C.
Zhang
,
C.
Yang
, and
D.
Ding
,
J. Micromech. Microeng.
14
,
663
(
2004
).
40.
A. R.
Shultz
,
J. Phys. Chem.
65
,
967
(
1961
).
41.
S.
Yoshimura
,
K.
Ikuse
,
Y.
Tsukazaki
,
M.
Kiuchi
, and
S.
Hamaguchi
,
J. Phys.: Conf. Ser.
191
,
012030
(
2009
).
42.
J.-Y.
Zhang
,
H.
Esrom
,
U.
Kogelschatz
, and
G.
Emig
,
J. Adhes. Sci. Technol.
8
,
1179
(
2012
).
43.
K.
Harada
,
J. Appl. Polym. Sci.
26
,
1961
(
1981
).
44.
R. L.
Bruce
 et al.,
J. Vac. Sci. Technol., B
27
,
1142
(
2009
).
45.
N.
Vourdas
,
A. G.
Boudouvisb
, and
E.
Gogolides
,
Microelectron. Eng.
78–79
,
474
(
2005
).
46.
N.
Vourdas
,
A. G.
Boudouvis
, and
E.
Gogolides
,
J. Phys.: Conf. Ser.
10
,
405
(
2005
).
47.
G. S.
Oehrlein
,
R. J.
Phaneuf
, and
D. B.
Graves
,
J. Vac. Sci. Technol., B
29
,
010801
(
2011
).
48.
K.
Harada
,
J. Electrochem. Soc.
127
,
491
(
1980
).
49.
K.
Sugita
,
N.
Ueno
,
K.
Harada
,
M.
Kushida
,
Y.
Suzuki
,
Y.
Takeuchi
, and
J.
Guillet
,
Polym. J.
25
,
1059
(
1993
).
50.
R.
Wüest
,
P.
Strasser
,
F.
Robin
,
D.
Erni
, and
H.
Jäckel
,
J. Vac. Sci. Technol., B
23
,
3197
(
2005
).
51.
S.
Yoshimura
,
K.
Ikuse
,
S.
Sugomoto
,
K.
Murai
,
M.
Kiuchi
, and
S.
Hamaguchi
,
J. Vac. Soc. Jpn.
56
,
129
(
2013
).
52.
H. W.
Choi
,
H. J.
Woo
,
W.
Hong
,
J. K.
Kim
,
S. K.
Lee
, and
C. H.
Eum
,
Appl. Surf. Sci.
169–170
,
433
(
2001
).
53.
M.
Satake
,
T.
Iwase
,
M.
Kurihara
,
N.
Negishi
,
Y.
Tada
, and
H.
Yoshida
,
J. Micro/Nanolithogr., MEMS, MOEMS
12
,
041309
(
2013
).
54.
S.
Wolff
,
B.
Lägel
, and
S.
Trellenkamp
,
Microelectron. Eng.
87
,
1444
(
2010
).
55.
K.
Mochiji
,
Y.
Wada
, and
H.
Obayashi
,
J. Electrochem. Soc.
129
,
2556
(
1982
).
56.
M. I. J.
Beale
,
C.
Broughton
,
A.
Pidduck
,
F. G. H.
Smith
,
A. G.
Brown
,
V. G. I.
Deshmukh
,
T. W.
Janes
,
S. H.
Mortimer
, and
S. J.
Till
,
Microelectron. Eng.
3
,
451
(
1985
).
57.
E.
Sitzmann
,
A.
Fuchs
, and
D.
Wostratzky
,
Handbook of Coatings Additives
, 2nd ed., edited by
J.
Florio
and
D.
Miller
(
Marcel Dekker, Inc.
,
New York
,
2004
), pp.
61
125
.
58.
R.
Weiqing
,
W.
Xiaogong
,
L.
Yanqing
,
H.
Yuli
, and
N.
Aijie
,
J. Appl. Polym. Sci.
101
,
1181
(
2006
).
59.
C. S. M.
Pereira
,
V. M. T. M.
Silva
, and
A. E.
Rodrigues
,
Green Chem.
13
,
2658
(
2011
).
60.
M.
Parikh
and
D. F.
Kyser
,
J. Appl. Phys.
50
,
1104
(
1979
).
You do not currently have access to this content.