In this paper, the authors report the device instability of solution based ZnO thin film transistors by studying the time-evolution of electrical characteristics during electrical stressing and subsequent relaxation. A systematic comparison between ambient and vacuum conditions was carried out to investigate the effect of adsorption of oxygen and water molecules, which leads to the creation of defects in the channel layer. The observed subthreshold swing and change in field effect mobility under gate bias stressing have supported the fact that oxygen and moisture directly affect the threshold voltage shift. The authors have presented the comprehensive analysis of device relaxation under both ambient and vacuum conditions to further confirm the defect creation and charge trapping/detrapping process since it has not been reported before. It was hypothesized that chemisorbed molecules form acceptorlike traps and can diffuse into the ZnO thin film through the void on the grain boundary, being relocated even near the semiconductor/dielectric interface. The stretched exponential and power law model fitting reinforce the conclusion of defect creation by oxygen and moisture adsorption on the active layer.

1.
M. J.
Powell
,
C.
van Berkel
,
I. D.
French
, and
D. H.
Nicholls
,
Appl. Phys. Lett.
51
,
1242
(
1987
).
2.
F. R.
Libsch
and
J.
Kanicki
,
Appl. Phys. Lett.
62
,
1286
(
1993
).
3.
K. S.
Karim
,
A.
Nathan
,
M.
Hack
, and
W. I.
Milne
,
IEEE Electron Device Lett.
25
,
188
(
2004
).
4.
C.-S.
Hwang
,
B. S.
Bae
,
H.-S.
Kong
, and
C.
Lee
,
J. Appl. Phys.
78
,
3467
(
1995
).
5.
R. B. M.
Cross
and
M. M. D.
Souza
,
Appl. Phys. Lett.
89
,
263513
(
2006
).
6.
R. B. M.
Cross
and
M. M. D.
Souza
,
IEEE Trans. Device Mater. Reliab.
8
,
277
(
2008
).
7.
R. B. M.
Cross
,
M. M. D.
Souza
,
S. C.
Deane
, and
N. D.
Young
,
IEEE Trans. Electron Devices
55
,
1109
(
2008
).
8.
D.
Gupta
,
S.
Yoo
,
C.
Lee
, and
Y.
Hong
,
IEEE Trans. Electron Devices
58
,
1995
(
2011
).
9.
D.
Gupta
,
M.
Anand
,
S.-W.
Ryu
,
Y.-K.
Choi
, and
S.
Yoo
,
Appl. Phys. Lett.
93
,
224106
(
2008
).
10.
J.-S.
Park
,
J. K.
Jeong
,
H.-J.
Chung
,
Y.-G.
Mo
, and
H. D.
Kim
,
Appl. Phys. Lett.
92
,
72104
(
2008
).
11.
J. K.
Jeong
,
H. W.
Yang
,
J. H.
Jeong
,
Y.-G.
Mo
, and
H. D.
Kim
,
Appl. Phys. Lett.
93
,
123508
(
2008
).
12.
D.
Kang
,
H.
Lim
,
C.
Kim
,
I.
Song
,
J.
Park
,
Y.
Park
, and
J.
Chung
,
Appl. Phys. Lett.
90
,
192101
(
2007
).
13.
Y.-C.
Chen
,
T.-C.
Chang
,
H.-W.
Li
,
S.-C.
Chen
,
J.
Lu
,
W.-F.
Chung
,
Y.-H.
Tai
, and
T.-Y.
Tseng
,
Appl. Phys. Lett.
96
,
262104
(
2010
).
14.
K.-H.
Lee
 et al.,
Appl. Phys. Lett.
95
,
232106
(
2009
).
15.
R.
Häusermann
and
B.
Batlogg
,
Appl. Phys. Lett.
99
,
083303
(
2011
).
16.
S. G. J.
Mathijssen
,
M.
Kemerink
,
A.
Sharma
,
M.
Cölle
,
P. A.
Bobbert
,
R. A. J.
Janssen
, and
D. M.
de Leeuw
,
Adv. Mater.
20
,
975
(
2008
).
17.
D. W.
Greve
,
Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems
(
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
,
1998
).
18.
J. W.
McPherson
,
Reliability Physics and Engineering
(
Springer International
,
Switzerland
,
2013
), pp.
5
28
.
19.
M. J.
Powell
,
C.
Van Berkel
, and
J. R.
Hughes
,
Appl. Phys. Lett.
54
,
1323
(
1989
).
20.
J.
Lagowski
,
E. S.
Sproles
, Jr.
, and
H. C.
Gatos
,
J. Appl. Phys.
48
,
3566
(
1977
).
21.
R. F.
Pierret
,
Field Effect Devices
, 2nd ed. (
Pearson
,
Reading, MA
,
1990
), Vol.
IV
.
22.
Y.
Takahashi
,
M.
Kanamori
,
A.
Kondoh
,
H.
Minoura
, and
Y.
Ohya
,
Jpn. J. Appl. Phys., Part 1
33
,
6611
(
1994
).
23.
J.
Zhang
,
X.
Li
,
J.
Lu
,
N.
Zhou
,
P.
Guo
,
B.
Lu
,
X.
Pan
,
L.
Chen
, and
Z.
Ye
,
RSC Adv.
4
,
3145
(
2014
).
24.
M. E.
Lopes
,
H. L.
Gomes
,
M. C. R.
Medeiros
,
P.
Barquinha
,
L.
Pereira
,
E.
Fortunato
,
R.
Martins
, and
I.
Ferreira
,
Appl. Phys. Lett.
95
,
63502
(
2009
).
25.
S.
Verlaak
and
P.
Heremans
,
Phys. Rev. B
75
,
115127
(
2007
).
You do not currently have access to this content.