Solder-based self-assembly is a method for micromachining three-dimensional structures on silicon. This process has been used for educational purposes due to the significant experience gained by students interested in semiconductor processing. However, patterning the silicon dioxide sacrificial layer involves handling hazardous materials such as buffered hydrofluoric acid. To provide a safer alternative to this dangerous etchant, the authors describe a method for using poly(acrylic acid), a water soluble polymer, as a patternable sacrificial layer in the solder-based self-assembly process. Key to this method is the use of thermal crosslinking, a partial development technique, oxygen plasma ashing, and a strong alkaline solution to etch the sacrificial layer and reflow the solder. Plasma ashing is important to keep water and alkaline developers from etching the vulnerable poly(acrylic acid) layer too early in the process. This method is able to achieve the goal of promoting the self-assembly of three-dimensional structures on silicon. Beyond its use in our solder-based self-assembly process, this method may also prove useful in any application requiring the use of a patternable sacrificial layer made from poly(acrylic acid), as well as other polymers of a similar nature.

2.
K. A.
Cook-Chennault
,
N.
Thambi
, and
A. M.
Sastry
,
Smart Mater. Struct.
17
,
043001
(
2008
).
3.
M. S.
Gudiksen
,
L. J.
Lauhon
,
J.
Wang
,
D. C.
Smith
, and
C. M.
Lieber
,
Nature
415
,
617
(
2002
).
4.
T.
Ergin
,
N.
Stenger
,
P.
Brenner
,
J. B.
Pendry
, and
M.
Wegener
,
Science
328
,
337
(
2010
).
5.
R. J.
Kline
 et al,
Chem. Mater.
23
,
1194
(
2011
).
6.
S.
Wang
,
A.
Kiersnowski
,
W.
Pisula
, and
K.
Müllen
,
J. Am. Chem. Soc.
134
,
4015
(
2012
).
7.
X.
Zhang
,
X. N.
Jiang
, and
C.
Sun
,
Sens. Actuators, A
77
,
149
(
1999
).
8.
C. K.
Malek
and
V.
Saile
,
Microelectron. J.
35
,
131
(
2004
).
9.
G. M.
Whitesides
and
M.
Boncheva
,
PNAS
99
,
4769
(
2002
).
10.
J. H.
Lee
,
W. S.
Choi
,
K. H.
Lee
, and
J. B.
Yoon
,
Micromech. Microeng.
18
,
125015
(
2008
).
11.
A.
del Campo
and
C.
Greiner
,
Micromech. Microeng.
17
,
R81
(
2007
).
12.
M.
Han
,
W.
Lee
,
S. K.
Lee
, and
S. S.
Lee
,
Sens. Actuators, A
111
,
14
(
2004
).
13.
M.
Rao
,
J. C.
Lusth
, and
S. L.
Burkett
,
J. Vac. Sci. Technol., B
27
,
76
(
2009
).
14.
M.
Rao
,
J. C.
Lusth
, and
S. L.
Burkett
,
J. Vac. Sci. Technol., B
29
,
042003
(
2011
).
15.
M.
Rao
,
J. C.
Lusth
, and
S. L.
Burkett
,
J. Vac. Sci. Technol., B
30
,
032001
(
2012
).
16.
M.
Rao
,
J. C.
Lusth
, and
S. L.
Burkett
,
J. Vac. Sci. Technol., B
31
,
032002
(
2013
).
17.
M.
Rao
,
J. C.
Lusth
, and
S. L.
Burkett
,
Am. J. Eng. Educ.
6
,
11
(
2015
).
18.
K.
Harsh
and
Y. C.
Lee
,
Proc. SPIE
3289
,
177
(
1998
).
19.
D. H.
Gracias
,
V.
Kavthekar
,
J. C.
Love
,
K. E.
Paul
, and
G. M.
Whitesides
,
Adv. Mater.
14
,
235
(
2002
).
20.
A.
Azam
,
T. G.
Leong
,
A. M.
Zarafshar
, and
D. H.
Gracias
,
PLoS One
4
,
e4451
(
2009
).
21.
J. S.
Randhawa
,
L. N.
Kanu
,
G.
Singh
, and
D. H.
Gracias
,
Langmuir
26
,
12534
(
2010
).
22.
C. L.
Randall
,
T. G.
Leong
,
N.
Bassik
, and
D. H.
Gracias
,
Adv. Drug Delivery Rev.
59
,
1547
(
2007
).
23.
M. J.
Yin
,
M.
Yao
,
S.
Gao
,
A. P.
Zhang
,
H. Y.
Tam
, and
P. K. A.
Wai
,
Adv. Mater.
28
,
1394
(
2016
).
24.
B. T.
Good
,
C. N.
Bowman
, and
R. H.
Davis
,
Chem. Eng. Sci.
59
,
5967
(
2004
).
25.
M.
Nakahata
,
Y.
Takashima
,
H.
Yamaguchi
, and
A.
Harada
,
Nat. Commun.
2
,
511
(
2011
).
26.
V.
Linder
,
B. D.
Gates
,
D.
Ryan
,
B. A.
Parviz
, and
G. M.
Whitesides
,
Small
1
,
730
(
2005
).
27.
M.
Lahav
,
M.
Narovlyansky
,
A.
Winkleman
,
R.
Perez-Castillejos
,
E. A.
Weiss
, and
G. M.
Whitesides
,
Adv. Mater.
18
,
3174
(
2006
).
28.
A.
Winkleman
,
R.
Perez-Castillejos
,
M.
Lahav
,
M.
Narovlyansky
,
L. N.
Rodriguez
, and
G. M.
Whitesides
,
Soft Matter
3
,
108
(
2007
).
29.
S. Y.
Yang
and
M. F.
Rubner
,
J. Am. Chem. Soc.
124
,
2100
(
2002
).
30.
H. W.
Chien
,
T. Y.
Chang
, and
W. B.
Tsai
,
Biomaterials
30
,
2209
(
2009
).
You do not currently have access to this content.